test
class MYMODEL_V11(BasicModule):
def __init__(self, opt):
super(MYMODEL_V11, self).__init__()
self.opt = opt
self.model_name = 'mymodel_v11'
self.batch_size = opt.batch_size
self.hidden_dim = opt.hidden_dim
self.num_layers = opt.lstm_layers
self.mean = opt.lstm_mean
self.vocab_size = opt.vocab_size
self.embedding_dim = opt.embedding_dim
self.label_size = opt.label_size
self.in_channel = 1
self.kernel_nums = opt.clstm_kernel_nums
self.kernel_sizes = opt.clstm_kernel_sizes
self.ks2 = opt.kernel_sizes
self.kn2 = opt.kernel_nums
self.use_gpu = torch.cuda.is_available()
self.max_seq_len = opt.max_seq_len
# self.embedding = nn.Embedding(self.vocab_size + 2, self.embedding_dim, padding_idx=self.vocab_size + 1)
self.embedding = nn.Embedding(self.vocab_size, self.embedding_dim, padding_idx=self.vocab_size-1, _weight=opt.embeddings)
# self.embedding.weight = nn.Parameter(opt.embeddings)
| kernel size | 3 |
|---|---|
| channels number | 256, 128, 64, 32, 32, 32 |
| batchnorm | 2 |
| dropout | 0.5 |
| learning rate | 5e-5 |
| pooling strategy | bilstm+maxpooling |
只使用LSTM、BiLSTM实现系统,并和Kim-CNN比较,说明RNN和CNN在特征提取中虽然使用不同的模型,但具有类似的表达能力
fg

浙公网安备 33010602011771号