The Triangle--nyoj 18
The Triangle
时间限制:1000 ms  |  内存限制:65535 KB
难度:4
- 描述
- 
7 
 3 8
 8 1 0
 2 7 4 4
 4 5 2 6 5
 (Figure 1)
 Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.- 输入
- Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
- 输出
- Your program is to write to standard output. The highest sum is written as an integer.
- 样例输入
- 
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 
- 样例输出
- 
30 
 
 
其实就是一个简单的dp思想,每一步都去了最优值从而达到整体最优
代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[1010][1010],i,j,n,sum;
int main()
{
	memset(a,0,sizeof(a));
	sum=0;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=i;j++)
		scanf("%d",&a[i][j]);
	}
	for(i=n-1;i>=1;i--)
	{
		for(j=1;j<=i*2-1;j++)
		{
			a[i][j]=max(a[i][j]+a[i+1][j],a[i][j]+a[i+1][j+1]);
		}
	}
	printf("%d\n",a[1][1]);
	return 0;
}  
                    
                
 
 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号