bzoj 3569 DZY Loves Chinese II 随机算法 树上倍增
题意:给你一个n个点m条边的图,有若干组询问,每次询问会选择图中的一些边删除,删除之后问此图是否联通?询问之间相互独立。此题强制在线。
思路:首先对于这张图随便求一颗生成树,对于每一条非树边,随机一个权值。树边的权值为所有覆盖这条树边的非树边的权值异或和。覆盖是指这条边是个返祖边,并且一端在父节点方向,一端在子节点方向。这样,我们选出若干条边,看一下他们异或起来是不是0,如果是0,那么相当于把一条树边和它的所有子节点方向的返祖边全部断开,那么图就不连通了。
代码:
#include <bits/stdc++.h>
#define LL long long
#define pii pair<int, int>
using namespace std;
const int maxn = 100010;
const int maxm = 500010;
const LL mod = 1e18;
mt19937 Random(time(0));
LL get(void) {
return 1ll * Random() * rand();
}
vector<pii> G[maxn], G1[maxn];
LL val[maxn];
int d[maxn], f[maxn][18], t;
bool v[maxn], v1[maxm];
struct edge {
int u, v;
LL w;
};
edge a[maxm];
void add(int x, int y, int id) {
G[x].push_back(make_pair(y, id));
G[y].push_back(make_pair(x, id));
}
void add1(int x, int y, int id) {
G1[x].push_back(make_pair(y, id));
G1[y].push_back(make_pair(x, id));
}
void dfs(int x) {
v[x] = 1;
for (auto y : G[x]) {
if(v[y.first]) continue;
dfs(y.first);
add1(x, y.first, y.second);
v1[y.second] = 1;
}
}
queue<int> q;
void bfs() {
q.push(1);
d[1] = 1;
while(q.size()) {
int x = q.front();
q.pop();
for (auto y : G1[x]) {
if(d[y.first]) continue;
d[y.first] = d[x] + 1;
f[y.first][0] = x;
for (int i = 1; i <= t; i++) {
f[y.first][i] = f[f[y.first][i - 1]][i - 1];
}
q.push(y.first);
}
}
}
int lca(int x, int y) {
if(d[x] > d[y]) swap(d[x], d[y]);
for (int i = t; i >= 0; i--) {
if(d[f[y][i]] >= d[x]) y = f[y][i];
}
if(x == y) return x;
for (int i = t; i >= 0; i--) {
if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
}
return f[x][0];
}
LL dfs1(int x, int fa) {
for (auto y : G1[x]) {
if(y.first == fa) continue;
dfs1(y.first, x);
a[y.second].w = val[y.first];
val[x] ^= val[y.first];
}
}
struct L_B{
long long d[61],p[61];
int cnt;
void init(){
memset(d,0,sizeof(d));
memset(p,0,sizeof(p));
cnt=0;
}
bool insert(long long val){
for (int i=60;i>=0;i--)
if (val&(1LL<<i))
{
if (!d[i])
{
d[i]=val;
break;
}
val^=d[i];
}
return val>0;
}
long long query_max() {
long long ret=0;
for (int i=60;i>=0;i--)
if ((ret^d[i])>ret)
ret^=d[i];
return ret;
}
long long query_min() {
for (int i=0;i<=60;i++)
if (d[i])
return d[i];
return 0;
}
void rebuild() {
for (int i=60;i>=0;i--)
for (int j=i-1;j>=0;j--)
if (d[i]&(1LL<<j))
d[i]^=d[j];
for (int i=0;i<=60;i++)
if (d[i])
p[cnt++]=d[i];
}
long long kthquery(long long k) {
int ret=0;
if (k>=(1LL<<cnt))
return -1;
for (int i=60;i>=0;i--)
if (k&(1LL<<i))
ret^=p[i];
return ret;
}
};
int main() {
int n, m, cnt = 0, x, y, num, T;
srand(time(0));
scanf("%d%d", &n, &m);
t = (int)(log(n) / log(2)) + 1;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &a[i].u, &a[i].v);
add(a[i].u, a[i].v, i);
}
dfs(1);
bfs();
for (int i = 1; i <= m; i++) {
if(v1[i]) continue;
a[i].w = get();
int tmp = lca(a[i].u, a[i].v);
val[a[i].u] ^= a[i].w;
val[tmp] ^= a[i].w;
val[a[i].v] ^= a[i].w;
val[tmp] ^= a[i].w;
}
dfs1(1, -1);
scanf("%d", &T);
while(T--) {
scanf("%d", &num);
bool flag = 1;
L_B solve;
solve.init();
for (int i = 1; i <= num; i++) {
scanf("%d", &x);
x ^= cnt;
flag = (flag & solve.insert(a[x].w));
}
if(flag == 0) {
printf("Disconnected\n");
} else {
printf("Connected\n");
cnt++;
}
}
}

浙公网安备 33010602011771号