reduce(func)
通过func函数聚集RDD中的所有元素,这个功能必须是可交换且可并联的
scala> val rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[85] at makeRDD at <console>:24
scala> rdd1.reduce(_+_)
res50: Int = 55
scala> val rdd2 = sc.makeRDD(Array(("a",1),("a",3),("c",3),("d",5)))
rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[86] at makeRDD at <console>:24
scala> rdd2.reduce((x,y)=>(x._1 + y._1,x._2 + y._2))
res51: (String, Int) = (adca,12)
![]()
![]()
collect()
count()
first()
take(n)
![]()
takeSample(withReplacement,num, [seed])
返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子
takeOrdered(n)
aggregate
(zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)
aggregate函数将每个分区里面的元素通过seqOp和初始值进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。
scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at <console>:24
scala> rdd1.aggregate(1)(
| {(x : Int,y : Int) => x + y},
| {(a : Int,b : Int) => a + b}
| )
res56: Int = 58
scala> rdd1.aggregate(1)(
| {(x : Int,y : Int) => x * y},
| {(a : Int,b : Int) => a + b}
| )
res57: Int = 30361
![]()
fold(num)(func)
折叠操作,aggregate的简化操作,seqop和combop一样。
scala> rdd1.fold(1)(_+_)
res60: Int = 13
saveAsTextFile(path)
将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本
![]()
![]()
saveAsSequenceFile(path)
将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。
saveAsObjectFile(path)
countByKey()
针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。
scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[95] at parallelize at <console>:24
scala> rdd.countByKey()
res63: scala.collection.Map[Int,Long] = Map(3 -> 2, 1 -> 3, 2 -> 1)
![]()
foreach(func)
在数据集的每一个元素上,运行函数func进行更新。
scala> var rdd = sc.makeRDD(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[107] at makeRDD at <console>:24
scala> var sum = sc.accumulator(0)
warning: there were two deprecation warnings; re-run with -deprecation for details
sum: org.apache.spark.Accumulator[Int] = 0
scala> rdd.foreach(sum+=_)
scala> sum.value
res68: Int = 55
scala> rdd.collect().foreach(println)
1
2
3
4
5
6
7
8
9
10
![]()