12-酮和醛
一元醛、酮::物理性质
沸点比烃、醚高,比醇低
- 比(等分子量)烃或醚高:羰基偶极矩大,分子间有偶极 - 偶极静电引力
- 比(同碳数)醇低很多:氢键作用力大于偶极间静电力
低分子量醛、酮在水中溶解度高
- 原因:羰基氧作氢键受体,与水分子中氢原子形成氢键
- 例:甲醛、乙醛、丙酮与水互溶,其它醛、酮随分子量 \(\uparrow\) 而 \(\downarrow\)
一元醛、酮::制法
醇的氧化和脱氢制醛、酮
\(\ce{R1-\overset{\underset{|\quad}{OH}}{CH}-R2 ->[\lbrack O\rbrack] R1-\overset{\underset{||}{O}}{C}-R2}\)
- \(\ce{->[CuCr2O4][50\degree C]}\):伯醇和仲醇可用一般的氧化剂氧化成酮,但用得较多的是六价铬的化合物,如 \(\ce{Na2Cr2O7}\),\(\ce{CrO3}\) 等
- \(\ce{CH3CH2CH2CH2OH->[CuCr2O4][300\ \sim\ 325\degree C]CH3CH2CH2CHO}\)
- \(\ce{->[Zn-Cu][400\ \sim\ 500\degree C]}\):将醇蒸气通过加热的催化剂(铜粉、银粉、亚铬酸铜、镍、铂、钯等),使醇脱氢生成醛或酮
- \(\ce{CH3\overset{\underset{|\quad}{OH}}{CH}CH2CH2 ->[Zn-Cu][400\ \sim\ 500\degree C] CH3COCH2CH3}\)
- \(\ce{->[PCC]}\):伯醇和仲醇,氧化的选择性好;PCC 是吡啶和 \(\ce{CrO3}\) 在盐酸溶液中的络合盐,又称“沙瑞特试剂”
炔烃水合制乙醛、甲基酮
\(\ce{RC#CH ->[H2O/H2SO4][HgSO4] [H2C=\overset{\underset{|\quad}{OH}}{CR}] -> R\overset{\underset{||}{O}}{C}CH3}\)
烯烃氧化制醛、酮
- \(\ce{->[O3]->[H2O][锌粉+醋酸]}\):烯烃臭氧化
- \(\ce{\begin{array}{r}\ce{R}\phantom{}_\diagdown\\\ce{H}\phantom{}^\diagup\end{array}=\begin{array}{l}_\diagup\ce{R'}\\^\diagdown\ce{R''}\end{array}->[O3]\underset{臭氧化物}{\begin{array}{r}\ce{R}\phantom{}_\diagdown\\\ce{H}\phantom{}^\diagup\end{array}\underset{\phantom{}^\diagdown O-O\phantom{}^\diagup}{\overset{\phantom{}_\diagup O\phantom{}_\diagdown}{C\phantom{OO}C}}\begin{array}{l}_\diagup\ce{R'}\\^\diagdown\ce{R''}\end{array}}->[H2O][锌粉+醋酸]\begin{array}{r}\ce{R}\phantom{}_\diagdown\\\ce{H}\phantom{}^\diagup\end{array}C=O + O=C\begin{array}{l}_\diagup\ce{R'}\\^\diagdown\ce{R''}\end{array} + H2O2}\)
- \(\ce{->[Tl(NO3)3][CH3OH]}\):烯烃可被硝酸铊、铬酰氯-锌等多种氧化剂氧化成醛
- \(\ce{_\ce{H3CO-}⌬^\ce{-CH=CH2} ->[Tl(NO3)3][CH3OH] \underset{75\%}{_\ce{H3CO-}⌬^\ce{-CH2CHO}}}\)
芳烃侧链氧化制醛
- \(\ce{->[MnO2][H2SO4/H2O]}\) 甲基氧化:芳烃侧链上的 \(\ce{\alpha-H}\) 受到苯环影响比较活泼,易被氧化;活性二氧化锰可直接将芳烃的侧链氧化成芳醛,为防止醛进一步被氧化,二氧化锰的用量应仅与芳烃等当量
- \(\ce{\!\!\!\!\overset{\underset{|}{\phantom{H3}CH3}}{⌬}->[MnO2][H2SO4/H2O]\underset{40\%}{\!\!\!\!\overset{\underset{|}{\phantom{OH}CHO}}{⌬}}}\)
- \(\ce{_\ce{H3C-}\!\!\!\!\overset{\underset{|}{\phantom{H3}CH3}}{⌬}\!\!\!\!_\ce{-CH3}->[MnO2][H2SO4/H2O]\underset{33\ \sim\ 38\%}{_\ce{H3C-}\!\!\!\!\overset{\underset{|}{\phantom{OH}CHO}}{⌬}\!\!\!\!_\ce{-CH3}}}\)
- \(\ce{\!\!\!\!\overset{\underset{|}{\phantom{H3}CH3}}{⌬}\!\!\!\!^\ce{-NO2}->[\text{1.}\ CrO3,\ (CH3CO)2O][\text{2.}\ HCl/H2O]\!\!\!\!\overset{\underset{|}{\phantom{OH}CHO}}{⌬}\!\!\!\!^\ce{-NO2}}\)(有吸电性硝基,也可用 \(\ce{->[MnO2][H2SO4/H2O]}\))
- \(\ce{->[CO,HCl][AlCL3,CuCl]}\) 对位引入:伽特曼-科赫反应,芳烃与 \(\ce{CO}\),\(\ce{HCl}\) 在 \(\ce{AlCl3\text{-}Cu2Cl2}\) 催化剂作用可在环上引入一个甲酰基的产物
- \(\ce{\!\!\!\!\overset{\underset{|}{\phantom{H3}CH3}}{⌬}->[MnO2][H2SO4/H2O]\!\!\!\!\overset{\underset{|}{\phantom{H3}CH3}}{\underset{\overset{|}{\phantom{OH}CHO}}{⌬}}}\)
- \(\ce{->[H2O,H+]}\) 同碳二卤化物水解:该法主要制备芳香族醛酮(芳环侧链 \(\ce{\alpha-H}\) 易被卤化)
- \(\ce{\!\!\!\!\overset{\underset{|}{\phantom{HCl2}CHCl2}}{⌬}->[H2O,H+]\!\!\!\!\overset{\underset{|}{\phantom{OH}CHO}}{⌬}}\)
醛、酮::烯醇(有 \(\alpha\text{-}\)氢的醛、酮)
酮-烯醇平衡(用酮式表示烯醇)
\(\ce{\underset{酮式}{-\overset{\underset{\!\!⮤||\phantom{⮤}\!\!}{O}}{C}-\overset{|}{\underset{\overset{\!\!\nwarrow|\phantom{\nwarrow}\!\!}{H}}{C}}-} <<=> \underset{共轭碱}{H+\left[-\overset{\underset{\!\!⮤||\phantom{⮤}\!\!}{O}}{C}\!\!\underleftarrow{-}\!\!\overset{|}{\underset{^-}{C}}- <-> \substack{\ce{O^-⤸\!\!\!\!}\\\phantom{|}\\\phantom{|}}\substack{\diagdown\\\diagup}=\substack{\!\!\!↷\!\!\diagup\\\diagdown}\right]} <<=> \underset{烯醇}{\substack{\ce{HO}\\\phantom{|}\\\phantom{|}}\substack{\diagdown\\\diagup}=\substack{\diagup\\\diagdown}}}\)
- 共轭碱可作 \(\ce{C^-}\) 和 \(\ce{O^-}\) 两种亲核试剂
- 酸催化:酸使羰基极化极大地加强,从而有利于α-质子的电离
- \(\ce{-\overset{\underset{||}{\!\!\!\!\!\!\!\!\!\!\!\!AH↶:\overset{\!\!‥\!\!}{O}}}{C}-\overset{|}{\underset{\overset{|}{H}}{C}}- <<=> A- + \left[\overset{\underset{\!\!⮤||\phantom{⮤}\!\!}{^+OH}}{-C-\phantom{}}\overset{|}{\underset{\overset{|}{H}}{C}}- <-> -\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{\underset{+}{C}}\!\!\underleftarrow{-}\!\!\overset{|}{\underset{\overset{|}{H}}{C}}-\right] <<=> \underset{烯醇}{\substack{\ce{HO}\\\phantom{|}\\\phantom{|}}\substack{\diagdown\\\diagup}=\substack{\diagup\\\diagdown}} + AH}\)
- 碱催化:碱起到夺质子的作用
- \(\ce{-\overset{\underset{\!\!⮤||\phantom{⮤}\!\!}{O}}{C}-\overset{|}{\underset{\overset{|}{\!\!\!\!\!\!\!\!\!\!\!\!\!\!HO^-↷H}}{C}}- <<=> H2O + \underset{共轭碱}{\left[-\overset{\underset{\!\!⮤||\phantom{⮤}\!\!}{O}}{C}\!\!\underleftarrow{-}\!\!\overset{|}{\underset{^-}{C}}- <-> \substack{\ce{O^-⤸\!\!\!\!}\\\phantom{|}\\\phantom{|}}\substack{\diagdown\\\diagup}=\substack{\!\!\!↷\!\!\diagup\\\diagdown}\right]} <<=> \underset{烯醇}{\substack{\ce{H-\underset{⤻}{O}}\\\phantom{|}}\substack{\diagdown\\\diagup}=\substack{\!\!\!↷\!\!\diagup\\\diagdown}} + HO-}\)
- 结构影响烯醇式占比:乙醛 < 丙酮 < 丁-2-酮 < 环己酮
- 简单单羰基化合物,在纯粹或水溶液中,烯醇式与酮式达成平衡,烯醇式含量很少
- β-二羰基化合物,烯醇式含量要大很多,如戊-2,4-二酮的烯醇式含量达到76%
- 戊-2, 4-二酮中间亚甲基上的氢有较大的酸性(pKa=9),说明它比较容易电离
- \(\ce{\underset{戊-2,4-二酮}{CH3\overset{\underset{||}{O}}{C}CH2\overset{\underset{||}{O}}{C}CH3} <=>> \underset{(76\%)}{H3C\overset{\underset{|\quad}{OH}}{C=}CH\overset{\underset{||}{O}}{C}CH3}}\)
金属置换烯醇羟基氢制烯醇盐
\(\ce{-\overset{\underset{||}{O}}{C}-\overset{|}{\underset{\overset{|}{H}}{C}}- ->[(i-C3H7)2N^-Li^+(LDA),\ THF] \substack{\ce{Li^+O^-}\\\phantom{|}\\\phantom{|}}\substack{\diagdown\\\diagup}=\substack{\diagup\\\diagdown}}\)
- 产物:烯醇盐,可作碳负离子亲核试剂(在 \(\alpha\text{-}\)碳上烷基化),也可作氧负离子亲核试剂(在氧上烷基化)
- \(\ce{\substack{\ce{O}\\||\\\diagup\diagdown\\|\quad|\\\diagdown\diagup} ->[(i-C3H7)2N^-Li^+(LDA),\ glyme][-78\degree C] \substack{\ce{\phantom{^-}O-}\\|\\\diagup_\diagdown\!\!\!\diagdown\\|\quad|\\\diagdown\diagup} ->[(CH3)3SiCl] \substack{\ce{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\phantom{S(CH3)3}OSi(CH3)3\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}\\|\\\diagup_\diagdown\!\!\!\diagdown\\|\quad|\\\diagdown\diagup}}\)
- \(\ce{<-[CH3I][-78\degree C]}\):烯醇盐制烯醇
\(\ce{\alpha-\phantom{}}\)碳是手性碳的烯醇自动失去光学活性(外消旋化)
\(\ce{\underset{(R)-3-苯基丁-2-酮}{ph-\overset{\underset{|}{\!\!\!\!H3C\phantom{H3}\!\!\!\!}}{\underset{\overset{|}{H}}{C}}-\overset{\underset{||}{O}}{C}-CH3} ->\begin{array}{r}\ce{ph}\phantom{}_\diagdown\\\ce{H3C}\phantom{}^\diagup\end{array}=\begin{array}{l}_\diagup\ce{OH}\\^\diagdown\ce{CH3}\end{array}->\underset{(RS)-3-苯基丁-2-酮}{ph-\underset{\overset{|}{\!\!\!\!H3C\phantom{H3}\!\!\!\!}}{\overset{\underset{|}{H}}{C}}-\overset{\underset{||}{O}}{C}-CH3}-}\)
- 如果羰基的 \(\ce{\alpha-\phantom{}}\)碳是手性碳,就将由于烯醇化而失去光学活性,即外消旋化
\(\ce{\alpha-\phantom{}}\)位卤化
\(\ce{⬡_{=O} + Cl2 ->[H2O][61\%\ \sim\ 66\%]}⬡_\ce{=O}^\ce{-Cl}\)
\(\ce{(CH3)2CH\overset{\underset{||}{O}}{C} + Br2 ->[CH3OH][70\%] (CH3)2CH\overset{\underset{||}{O}}{C}CH2Br + HBr}\)
- 催化(酸碱催化):醛、酮的卤化在α位进行,酸碱对反应有催化作用
- 酸催化:易留在一卤代物阶段,不易变成烯醇
- 碱催化:不易留在一卤代物阶段
- 催化(自动催化,一般有诱导期):加卤素后无明显的反应迹象,生成的卤化氢起催化作用,使反应很快完成
卤仿反应检验乙醛和甲基酮
\(\ce{CH3COCH3 + NaOI ->[\Delta] CH3COONa + CHI3 + 2NaOH}\)
- 反应物:乙醛、甲基酮、\(\ce{CH3CHOH}\) 型仲醇
- 条件:次卤酸盐或卤素 / NaOH
- 产物:卤仿、相应羧酸盐(少一个碳)
- 应用:检验乙醛和甲基酮的存在
- 碘仿特殊性:碘仿是不溶于水的黄色固体,有特殊气味
醛、酮::加成(亲核试剂)
加烯醇(羟醛缩合)
\(\ce{-\overset{|}{\underset{|}{C}}-\overset{\underset{||}{O}}{\underset{|}{C}} + H-\overset{|}{\underset{|}{C}}-\overset{\underset{||}{O}}{C}- ->[OH-] -\overset{|}{\underset{|}{C}}-\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{\underset{|}{C}}-\overset{|}{\underset{|}{C}}-\overset{\underset{||}{O}}{C}-}\)
- 描述:烯醇负离子具有碳负离子的性质,如果作为亲核试剂,进攻羰基化合物,则生成β-羟基醛酮或α,β-不饱和羰基化合物,称为羟醛缩合反应
- 醛的缩合:较容易进行,低分子量醛在稀碱溶液中很快缩合为 β-羟基醛
- 例:\(\ce{2CH3CHO->[HO-][5\degree,4-5h]CH3\underset{\overset{|\quad}{OH}}{CH}-CH2CHO}\)(3-羟基丁醛 (aldol),50%)
- 酮的缩合:碱性条件下,不对称酮缩合时,一般是空间位阻小的 \(\alpha-\)位进攻另一分子的羰基几率大,对甲基酮,甲基作为碳负进攻
- 丁-2-酮,碱性条件:\(\ce{2CH3CH2COCH3<=>[Base]CH3CH2\overset{\underset{|\quad}{OH}}{\underset{\overset{|\quad}{CH3}}{C-\phantom{}}}CH2COCH2CH3}\)
- 丁-2-酮,酸性条件:\(\ce{2CH3CH2COCH3<=>[Acid]CH3CH2\underset{\overset{|\quad}{CH3}}{C=}\underset{\overset{|\quad}{CH3}}{C-\phantom{}}COCH3}\)
- 交叉羟醛缩合(两种不同醛酮之间的缩合):如果其中一种醛没有α-氢,则可以得一种主要产物(否则有 4 种反应可能性,往往得混合产物)
- 芳醛没有α-氢,可以与其它有α-氢的醛酮缩合
- \(\ce{C6H5CHO + CH3CH22CHO ->[OH-][10\degree C] \begin{array}{r}\ce{C6H5}\phantom{}_\diagdown\\\ce{H}\phantom{}^\diagup\end{array}=\begin{array}{l}_\diagup\ce{CH3}\\^\diagdown\ce{CHO}\end{array}+H2O}\)
- \(\ce{C6H5CHO + CH3COC6H5 ->[NaOH,H2O][30\degree C]\underset{85\%}{C6H5CH=CHCOC6H5}}\)
- \(\ce{C6H5CHO + CH3COCH3 ->[10\% NaOH][25\sim 30\degree C] \begin{array}{r}\ce{C6H5}\phantom{}_\diagdown\\\ce{H}\phantom{}^\diagup\end{array}=\begin{array}{l}_\diagup\ce{H}\\^\diagdown\ce{COCH3}\end{array}}\)
- \(\ce{HCHO + i-C3H7CHO ->[Na2CO3][40\degree C]\underset{64\%}{H3C-\overset{\underset{|\quad\quad\quad}{CH3\quad\quad}}{\underset{\overset{|\quad\quad\quad}{CH2OH\quad}}{C-CHO}}}}\)
- 分子内缩合:二羰基化合物起分子内缩合反应生成环状化合物,是合成5-7元环的重要方法
加氢氰酸
\(\ce{R1-\overset{\underset{||}{O}}{C}-R2 ->[HCN][少量碱] \begin{array}{r}\ce{HO}\phantom{}_⯅\\\ce{R1}\phantom{}^\diagup\end{array}C\begin{array}{l}_⋰\ce{CN}\\^\diagdown\ce{R2}\end{array}}\)
- \(\ce{->[HCN]}\):醛、脂肪族甲基酮和含 \(8\) 个碳原子以下的环酮可以与氢氰酸发生加成,生成氰醇
- 加入少量碱有利于 \(\ce{HCN}\) 电离出 \(\ce{CN-}\),促进反应
- \(\ce{\overset{^-CN\searrow}{R1-\phantom{}}\overset{\underset{||}{O}}{C}-R2 <=>[决速步骤] \begin{array}{r}\ce{^-O}\phantom{}_⯅\\\ce{R1}\phantom{}^\diagup\end{array}C\begin{array}{l}_⋰\ce{CN}\\^\diagdown\ce{R2}\end{array} <=>[HCN] \begin{array}{r}\ce{HO}\phantom{}_⯅\\\ce{R1}\phantom{}^\diagup\end{array}C\begin{array}{l}_⋰\ce{CN}\\^\diagdown\ce{R2}\end{array} + CN-}\)
- \(\ce{->[HCN]->[水解]}\):碳链增长一个碳
- \(\ce{\!\!\!\!\!\!\!\!\!\!\!\!\overset{\underset{|}{\phantom{HO}CHO}}{\phantom{_\ce{-NO2}}⌬_\ce{-NO2}}->[CN-,H+]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\overset{\underset{|}{\phantom{H(OH)CN}CH(OH)CN}}{\phantom{_\ce{-NO2}}⌬_\ce{-NO2}}->[水解]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\overset{\underset{|}{\phantom{H(OH)COOH}CH(OH)COOH}}{\phantom{_\ce{-NO2}}⌬_\ce{-NO2}}}\)
- \(\ce{->[HCN]->[CH3OH][H2SO4]->[\text{Cat.}][聚合]}\):氰醇是个重要的有机合成中间体,合成甲基丙烯酸甲酯,聚合为有机玻璃
- \(\ce{\begin{array}{r}\ce{H3C}\phantom{}_\diagdown\\\ce{H3C}\phantom{}^\diagup\end{array}C=O ->[HCN] \begin{array}{r}\ce{H3C}\phantom{}_\diagdown\\\ce{H3C}\phantom{}^\diagup\end{array}\underset{\overset{|\quad}{CN}}{C-\phantom{}}OH ->[CH3OH][H2SO4] \underset{甲基丙烯酸甲酯}{H2C=\underset{\overset{|\quad}{CH3}}{C-\phantom{}}COOCH3}->[\text{Cat.}][聚合]\underset{有机玻璃}{-\!\!\![\ \overset{H2}{C}-\!\!\!\overset{CH3\quad\ }{\underset{COOCH3}{+\!\!\!-\!\!\!-\!\!\!]_n\quad\ }}}}\)
加金属有机试剂(格氏试剂、烷基锂、金属炔化物等)
\(\ce{\begin{array}{r}\ce{R'}\phantom{}_\diagdown\\\ce{R}\phantom{}^\diagup\end{array}C=O <=>[\ce{Nu^-A+}][slow] \begin{array}{r}\ce{R'}\phantom{}_\diagdown\\\ce{R}\phantom{}^\diagup\end{array}C\begin{array}{l}_\diagup\ce{OA}\\^\diagdown\ce{Nu}\end{array} <=>[fast] \begin{array}{r}\ce{R'}\phantom{}_\diagdown\\\ce{R}\phantom{}^\diagup\end{array}C\begin{array}{l}_\diagup\ce{OH}\\^\diagdown\ce{Nu}\end{array}}\)
- \(\ce{->[R-MgX][H3O+]}\) 或 \(\ce{->[R-MgX][醚]}\):格氏试剂 \(\ce{R-MgX}\) 与醛酮反应制醇,与甲醛反应可得伯醇,与其它醛反应可得仲醇,与酮反应得叔醇
- 活性大:对底物限制比氢氰酸小
- 体积很大时不适用:与羰基相连的两个烃基和格氏试剂中的烃基的体积(如苯)都很大时,格氏试剂对酮加成的产率就降低或不起加成反应
- \(\ce{\begin{array}{r}\phantom{}_\diagdown\\\phantom{}^\diagup\end{array}C=O ->[R-MgX] \begin{array}{r}\phantom{}_⋱\\\phantom{}^⯆\end{array}C\begin{array}{l}_\diagup\ce{R}\\^\diagdown\ce{OMgX}\end{array} ->[H3O+] \begin{array}{r}\phantom{}_⋱\\\phantom{}^⯆\end{array}C\begin{array}{l}_\diagup\ce{R}\\^\diagdown\ce{OH}\end{array} + Mg(OH)X}\)
- \(\ce{CH3CH2\overset{\underset{||}{O}}{C}CH2CH2CH3 + C6H5MgBr ->[醚] \begin{array}{r}\ce{CH3CH2}\phantom{}_\diagdown\\\ce{C6H5}\phantom{}^\diagup\end{array}C\begin{array}{l}_\diagup\ce{OH}\\^\diagdown\ce{CH2CH2CH3}\end{array}}\)(底物 \(\ce{-C6H5,\ -CH2CH3,\ -CH2CH2CH3}\) 可互换)
- \(\ce{->[t-BuLi][-60\ \sim\ -70\degree C]}\):烷基锂与羰基化合物的反应活性大得多,下列反应用锂试剂可发生,用镁试剂不发生
- \(\ce{\begin{array}{r}\ce{t-Bu}\phantom{}_\diagdown\\\ce{t-Bu}\phantom{}^\diagup\end{array}C=O ->[t-BuLi][-60\ \sim\ -70\degree C] \underset{81\%}{(t-Bu)3COH}}\)
- \(\ce{->[RC#C^-Na+][H3O+]}\):金属炔化物也能与羰基加成得高炔丙醇类化合物
- \(\ce{\begin{array}{r}\phantom{}_\diagdown\\\phantom{}^\diagup\end{array}C=O ->[RC#C^-Na+] RC#C-\overset{|}{\underset{|}{C}}-ONa ->[H3O+] RC#C-\overset{|}{\underset{|}{C}}-OH}\)
醛、酮::还原
羰甲基还原成羟基
\(\ce{R_1-\overset{\underset{||}{O}}{C}-R2->[\lbrack H\rbrack]R_1-\overset{\underset{|\quad}{OH}}{CH}-R2}\)
- \(\ce{->[LiAlH4][Et2O]}\) 或 \(\ce{->[NaBH4][CH3OH]}\) 用金属氢化物还原:\(\ce{LiAlH4}\) 的还原能力很强,除了孤立的(不共轭的)碳碳双键,它几乎能不加选择地还原所有卤素、硝基、含氧双键和含氮双(叁)键官能团;\(\ce{NaBH4}\) 的还原能力比 \(\ce{LiAlH4}\) 弱很多
- \(\ce{⭔=O->[LiAlH4][Et2O]\underset{85\%}{⭔\substack{_\diagup\\^\diagdown}\phantom{}^{OH}_H}}\)
- \(\ce{->[H2/Pt][C2H5OH,\ 少量\ NaOH]}\) 催化加氢还原:没有选择性,若醛、酮分子中有其它不饱和基团(C=C、C≡C、-NO2、-C≡N等),也同时被还原
- \(⎔\substack{_\diagup\\^\diagdown}\phantom{}_\ce{OH}^\ce{\overset{\underset{||}{O}}{C}-CH3}\ce{->[H2/Pt][C2H5OH,\ 少量\ NaOH]}⎔\substack{_\diagup\\^\diagdown}\phantom{}_\ce{OH}^\ce{\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{C}-CH3}\)
羰甲基还原成羟基(无 \(\alpha\) 氢原子的醛,坎尼扎罗还原)
\(\ce{-\overset{|}{\underset{|}{C}}-CHO ->[HCHO][OH-] -\overset{|}{\underset{|}{C}}-CH2OH}\)
- 甲醛还原性强,可将无 \(\alpha\) 氢的醛还原成醇,甲醛被氧化成酸
- \(\ce{-\overset{|}{\underset{|}{C}}-CHO + H-\overset{\underset{||}{O}}{C}-H ->[Ca(OH)2] -\overset{|}{\underset{|}{C}}-CH2OH + HCOO-}\)
- \(_\ce{OCH3-}⌬^\ce{-CHO}\ce{+HCHO->[浓\ NaOH]}_\ce{OCH3-}⌬^\ce{-CH2OH}\ce{+HCOONa}\)
羰甲基还原成羟基(双分子还原,生成邻二醇)
\(\ce{R-\overset{\underset{||}{O}}{C}-R' ->[1.\ M,\ 苯][2.\ H2O] R\underset{\overset{\quad |}{HO}}{-\overset{\underset{|}{R'}}{C}}-\underset{\overset{|\quad}{OH}}{\overset{\underset{|}{R'}}{C}-}R}\)
- 在钠、铝、镁、铝汞齐或低价钛试剂的催化下,醛酮在非质子溶剂中发生双分子还原偶联,生成频哪醇的反应,最有效的试剂是低价钛试剂
羰甲基还原成亚基
\(\ce{R_1-\overset{\underset{||}{O}}{C}-R2->[\lbrack H\rbrack]R1-CH2-R2}\)
- \(\ce{->[Zn(Hg)][HCl]}\) 克莱门森还原:耐热酸的化合物,醛酮与锌汞齐和浓盐酸一起加热,酮的效果要好于醛
- \(\ce{R_1-\overset{\underset{||}{O}}{C}-R2->[Zn(Hg)][HCl]R_1-CH2-R2}\)
- \(\ce{->[NH2NH2/NaOH][(HOCH2CH2)2O\Delta]->[-N2]}\) 黄鸣龙还原:对碱稳定的化合物
- 直接将醛酮、氢氧化钠、肼的水溶液和一个水溶性的高沸点溶剂(如二缩乙二醇)混在一起加热,使醛酮变成腙,然后将水和过量肼蒸出,再升高温度到腙的分解温度(~200ºC),维持一段时间使反应完全
- \(\ce{⬡=O->[NH2NH2/NaOH][(HOCH2CH2)2O\Delta]⬡=N-NH2->[-N2]⬡}\)
醛、酮::氧化
醛氧化成羧酸
\(\ce{R-CHO ->[\lbrack O\rbrack] R-COOH}\)
- \(\ce{->[Ag(NH3)2OH][\Delta]}\):弱氧化剂就可以使醛氧化。例如Tollen试剂(硝酸银的氨水溶液)就可以将醛氧化成羧酸 。银镜反应——区分醛和酮
- \(\ce{RCHO + \underset{无色}{2Ag(NH3)2OH} ->[\Delta] RCOONH4 + \underset{银镜}{2Ag\downarrow} + H2O + 3NH3}\)
- \(\ce{->[Ag2O,\ H2O/THF][25\degree C]}\):氧化银是一种温和的氧化剂,可以氧化醛基,而不影响其他官能团。
- \(\ce{\tiny^\textbf{|}\normalsize\!\!⬡-CHO + Ag2O ->[H2O/THF][25\degree C] \underset{97\%}{\tiny^\textbf{|}\normalsize\!\!⬡-COOH}}\)
醛、酮::歧化
无 \(\alpha\) 氢原子的醛,坎尼扎罗还原
\(\ce{-\overset{|}{\underset{|}{C}}-CHO ->[OH-] -\overset{|}{\underset{|}{C}}-COO^- + -\overset{|}{\underset{|}{C}}-CH2OH}\)
- 无 \(\alpha\) 氢原子的醛在浓碱存在下可以发生歧化反应,即两个分子醛相互作用,其中一分子醛还原成醇,一个氧化成酸
- \(\ce{2HCHO->[浓\ NaOH\ (50\%)][\Delta]\underset{甲酸钠}{HCOONa}+\underset{甲醇}{HCH2OH}}\)
- \(\ce{2⌬-CHO->[浓\ NaOH][\Delta]\underset{苯甲酸钠}{⌬-COONa}+\underset{苯甲醇}{⌬-CH2OH}}\)
醛、酮::烯酮(\(\alpha,\beta\text{-}\)不饱和醛、酮)::加成
\(\ce{C=C}\) 被亲电加溴、\(\ce{C=O}\) 被亲核加成
\(\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{||}{O}}{C}- <->}\left\{\begin{array}{lll}\ce{-\overset{|}{\underset{+}{C}}-\overset{|}{\underset{-}{C}}-\overset{\underset{||}{O}}{C}-}&\ce{->[Br2]}&\ce{-\overset{|}{\underset{\overset{|}{Br}}{C}}-\overset{|}{\underset{\overset{|}{Br}}{C}}-\overset{\underset{||}{O}}{C}-}\\\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{|}{\!\!\phantom{^-}O^-\!\!}}{\underset{+}{C}}-}&\ce{->[RLi]}&\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{|}{\!\!\!\!\phantom{Li}OLi\!\!\!\!}}{\underset{\overset{|}{R}}{C}}-}\\&\ce{->[H2O]}&\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{\underset{\overset{|}{H}}{C}}-}\\\ce{-\overset{|}{\underset{+}{C}}-\overset{|}{C}=\overset{\underset{|}{\!\!\phantom{^-}O^-\!\!}}{C}-}&\ce{->[\text{1.}\ Nu][\text{2.}\ H+]}&\ce{-\overset{|}{\underset{\overset{|}{Nu}}{C}}-\overset{|}{C}=\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{C}-}\end{array}\right.\)
- 反应机理(碱性条件,1,4-加成):\(\ce{\quad\underset{\!\!\!\!\!\!\!\!Nu^-⤻\!\!}{\phantom{}-\phantom{}}\overset{|}{C}=\overset{|}{\underset{⤻}{C}}-\overset{\underset{\!\!⮤||\phantom{⮤}\!\!}{O}}{C}- -> \left[\begin{array}{c}-\overset{|}{\underset{\overset{|}{Nu}}{C}}-\overset{|}{C}\underset{\!\!⮠}{\phantom{}=\phantom{}}\overset{\underset{|}{\!\!\phantom{^-}O^-_⤸\!\!}}{C}-\\\updownarrow\\-\overset{|}{\underset{\overset{|}{Nu}}{C}}-\overset{|}{\underset{-}{C}}-\overset{\underset{||}{O}}{C}-\end{array}\right] ->[H+] -\overset{|}{\underset{\overset{|}{Nu}}{C}}-\overset{|}{C}=\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{C}- <=>>[互变异构] -\overset{|}{\underset{\overset{|}{Nu}}{C}}-\overset{|}{\underset{\overset{|}{H}}{C}}-\overset{\underset{||}{O}}{C}-}\)
- 反应机理(酸性条件):\(\ce{\begin{array}{r}\diagdown\\\diagup\end{array}C\overset{↷\!\!\!|\ }{=C-\phantom{}}\overset{\underset{||↷H^+\!\!\!\!\!\!\!\!}{O}}{C}- -> \left[\begin{array}{c}-\overset{|}{\underset{+}{C}}-\overset{|}{C}=\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{C}-\\\updownarrow\\-\overset{|}{C}=\overset{|}{C}-\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{\underset{+}{C}}-\end{array}\right] ->[Z-] -\overset{|}{\underset{\overset{|}{Z}}{C}}-\overset{|}{C}=\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{C}- <=>>[互变异构] -\overset{|}{\underset{\overset{|}{Z}}{C}}-\overset{|}{\underset{\overset{|}{H}}{C}}-\overset{\underset{||}{O}}{C}-}\)
二烷基铜锂 1,4-加成
\(\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{||}{O}}{C}- ->[LiCu(R)2][(1)\ Et2O,\ (2)\ H2O] -\overset{|}{\underset{\overset{|}{R}}{C}}-\overset{|}{\underset{\overset{|}{H}}{C}}-\overset{\underset{||}{O}}{C}-}\)
烷基锂 1,2-加成
\(\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{||}{O}}{C}- ->[R-Li][(1)\ Et2O,\ (2)\ H2O] -\overset{|}{C}=\overset{|}{C}-\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{\underset{\overset{|}{R}}{C}}-}\)
烯醇 Michael 加成制 1,5-二羰基化合物
\(\ce{\underset{给体}{-\overset{\underset{||}{O}}{C}-\overset{|}{\underset{|}{C}}-H} + \underset{受体}{\overset{|}{\underset{|}{C}}=\overset{|}{C}-\overset{\underset{||}{O}}{C}-} ->[KOH] \underset{1,5-二羰基化合物}{-\overset{\underset{||}{O}}{C}-\overset{|}{\underset{|}{C}}-\overset{|}{\underset{|}{C}}-\overset{|}{\underset{\overset{|}{H}}{C}}-\overset{\underset{||}{O}}{C}-}}\)
- 给体:烯醇(有 \(\alpha\text{-}\)氢的醛或酮)负离子
- 受体:\(\alpha,\beta\text{-}\)不饱和醛、酮(\(\alpha,\beta\text{-}\)不饱和键 \(\ce{C=C}\) 可换成 \(\ce{C#C}\))
- 碱性催化剂:\(\substack{\diagup\diagdown\\|\quad|\\^{\diagdown}\!\ce{N}\!^{\diagup}\\\ce{H}}\),\(\ce{Et3N}\),\(\ce{KOH}\),\(\ce{EtONa}\),\(\ce{(CH3)3COK}\),\(\ce{R4N^+OH^-}\)
- \(\xleftarrow{较高温度}\):加成产物较高温度下分解为原料
烯醇 Robinson 增环制六元环状烯酮
\(\ce{\underset{受体}{\substack{\ce{-C-\overset{\underset{||}{O}}{C}-\overset{|}{C}H-H}\\\ce{-\overset{||}{\underset{|}{C}}\phantom{-C-CH-H}}}} + \underset{给体}{\substack{\ce{\phantom{|}}\\\ce{\phantom{-\phantom{}}\overset{\underset{|}{H}}{\underset{\!\!\diagup\ \diagdown\!\!}{C}}-\underset{|}{C}=O }}} ->[KOH] \underset{1,5-二羰基化合物}{\substack{\ce{-\overset{\underset{|}{H}}{C}-\overset{\underset{||}{O}}{C}-\overset{|}{C}H-H}\\\ce{-\overset{|}{\underset{|}{C}}-\underset{\!\!\diagup\ \diagdown\!\!}{C}-\underset{|}{C}=O\phantom{H} } } } ->[KOH] \substack{\ce{-\overset{\underset{|}{H}}{C}-\overset{\underset{||}{O}}{C}-\overset{|}{C}-H\phantom{O}}\\\ce{-\overset{|}{\underset{|}{C}}-\underset{\!\!\diagup\ \diagdown\!\!}{C}-\underset{|}{\overset{|}{C}}-OH} } ->[-H2O] \substack{\ce{-\overset{\underset{|}{H}}{C}-\overset{\underset{||}{O}}{C}-\overset{|}{C}}\\\ce{-\overset{|}{\underset{|}{C}}-\underset{\!\!\diagup\ \diagdown\!\!}{C}-\overset{||}{\underset{|}{C}} } } }\)
- 描述:\(\alpha,\beta\text{-}\)不饱和醛、酮 \(+\) 烯醇 \(\ce{->[\text{1.}\ Michael\ 加成]->[\text{2.}\ 分子内羟醛缩合]}\) 六元环状烯酮
醛、酮::烯酮(\(\alpha,\beta\text{-}\)不饱和醛、酮)::还原
氢化铝锂还原制 \(\alpha,\beta\text{-}\)不饱和醇
\(\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{||}{O}}{C}- ->[LiAH4][THF,\ -10\degree C] -\overset{|}{C}=\overset{|}{C}-\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{\underset{\overset{|}{H}}{C}}-}\)
- 保留双键:控制温度(低)、反应时间(短)、浓度、当量、pH值
- 还原双键:如 \(\ce{ph-\overset{\underset{|}{H}}{C}=\overset{\underset{|}{H}}{C}-\overset{\underset{||}{O}}{C}-H ->[LiAlH4\ (过量)][Et2O,\ 25\degree C] ph-\overset{\underset{|}{H}}{\underset{\overset{|}{H}}{C}}-\overset{\underset{|}{H}}{\underset{\overset{|}{H}}{C}}-\overset{\underset{|}{\!\!\!\!\phantom{H}OH\!\!\!\!}}{\underset{\overset{|}{H}}{C}}-H}\)
催化加氢制饱和醛、酮
\(\ce{-\overset{|}{C}=\overset{|}{C}-\overset{\underset{||}{O}}{C}- ->[H2][Pd-C] -\overset{|}{\underset{\overset{|}{H}}{C}}-\overset{|}{\underset{\overset{|}{H}}{C}}-\overset{\underset{||}{O}}{C}-}\)
浙公网安备 33010602011771号