TQ210裸机编程(6)——UART(1)

S5PV210包含4个异步收发器(UART),提供4个独立的异步串行输入/输出(I/O)端口。所有端口可工作于中断模式或DMA模式。提供高达3Mbps的位速率。每个UART包含2个FIFO用于接收和发送数据。

具有可编程的波特率、红外收发、1位或2位停止位、5~8位数据位、校验。


UART框图如下:

数据发送:要发送的数据帧是可编程的。它包含1位起始位,5~8位数据位,1个选项校验位,1或2位停止位,这些都通过ULCONn寄存器来设置。在FIFO模式下发送器将要发送的数据发送给Tx FIFO,在非FIFO模式下,发送器将要发送的数据发送给Tx保持寄存器

数据接收:和数据发送类似。


串口编程操作步骤:

1、配置时钟,选择时钟源

2、配置ULCONn寄存器:设置数据位、停止位校验位、模式

3、配置UCONn寄存器:设置数据接收和发送模式、时钟源

3、设置UFCONn:启用或静止FIFO

4、配置UBRDIVn和UDIVSLOTn:计算波特率

5、发送数据:等待发送器为空,将要发送的8位数据赋给发送缓存寄存器UTXHn

6、接收数据:等待接收缓冲区有数据可读,从接收缓存寄存器URXHn中取出数据。


波特率计算:

DIV_VAL = UBRDIVn + (num of 1's in UDIVSLOTn)/16
DIV_VAL = (PCLK / (bps x 16)) −1
或者
DIV_VAL = (SCLK_UART / (bps x 16)) −1

比如配置波特率为115200bps,时钟源选择PCLK=66MHz

DIV_VAL = (66000000/(115200 x 16))-1 = 35.8 - 1 = 34.8
UBRDIV0 = 34 (DIV_VAL的整数部分)
(num of 1's in UDIVSLOTn)/16 = 0.8 (DIV_VAL的小数部分)
(num of 1's in UDIVSLOTn) = 12
UDIVSLOT0 = 0xDDDD (查表)



实验效果:

按数字1则改变LED1的状态;按数字2改变LED2的状态。


代码:

start.S

 

.global _start				/* 声明一个全局的标号 */
_start:
	bl clock_init			/* 时钟初始化 */
	bl uart_init			/* 串口初始化 */
	bl main					/* 跳转到C函数去执行 */
halt:
	b halt

 

 

clock.c

 

#define APLLCON0		*((volatile unsigned int *)0xE0100100)
#define MPLLCON			*((volatile unsigned int *)0xE0100108)
#define EPLLCON0		*((volatile unsigned int *)0xE0100110)
#define VPLLCON			*((volatile unsigned int *)0xE0100120)
#define CLK_SRC0 		*((volatile unsigned int *)0xE0100200)
#define CLK_DIV0		*((volatile unsigned int *)0xE0100300)
#define CLK_DIV1		*((volatile unsigned int *)0xE0100304)
#define CLK_DIV2		*((volatile unsigned int *)0xE0100308)
#define CLK_DIV3		*((volatile unsigned int *)0xE010030C)

void clock_init()
{
	/* 1、设置PLL_LOCK寄存器(这里使用默认值) */
	/* 2、设置PLL_CON寄存器(使用芯片手册推荐的值) */
	APLLCON0	= (1 << 0) | (3 << 8) | (125 << 16) | (1 << 31);	/* FOUTAPLL = 1000MHz */
	MPLLCON 	= (1 << 0) | (12 << 8) | (667 << 16) | (1 << 31);	/* FOUTMPLL = 667MHz */
	EPLLCON0 	= (1 << 0) | (12 << 8) | (667 << 16) | (1 << 31);	/* FOUTEPLL = 96MHz */
	VPLLCON 	= (3 << 0) | (6 << 8) | (108 << 16) | (1 << 31);	/* FOUTVPLL = 54MHz */
	
	/* 3、选择PLL为时钟输出 */
	/* MOUT_MSYS = SCLKAPLL = 1000MHz
	** MOUT_DSYS = SCLKMPLL = 667MHz
	** MOUT_PSYS = SCLKMPLL = 667MHz
	*/
	CLK_SRC0 = (1 << 0) | (1 << 4) | (1 << 8) | (1 << 12);
	
	/* 4、设置系统时钟分频值 */
	/* freq(ARMCLK) = MOUT_MSYS / (APLL_RATIO + 1) = 1000MHz / (0 + 1) = 1000MHz
	** freq(HCLK_MSYS) = ARMCLK / (HCLK_MSYS_RATIO + 1) = 1000MHz / (4 + 1) = 200MHz
	** freq(PCLK_MSYS) = HCLK_MSYS / (PCLK_MSYS_RATIO + 1) = 200MHz / (1 + 1) = 100MHz
	** freq(HCLK_DSYS) = MOUT_DSYS / (HCLK_DSYS_RATIO + 1) = 667 / (3 + 1) = 166MHz
	** freq(PCLK_DSYS) = HCLK_DSYS / (PCLK_DSYS_RATIO + 1) = 166 / (1 + 1) = 83MHz
	** freq(HCLK_PSYS) = MOUT_PSYS / (HCLK_PSYS_RATIO + 1) = 667 / (4 + 1) = 133MHz
	** freq(PCLK_PSYS) = HCLK_PSYS / (PCLK_PSYS_RATIO + 1) = 133 / (1 + 1) = 66MHz
	*/
	CLK_DIV0 = (0 << 0) | (4 << 8) | (1 << 12) | (3 << 16) | (1 << 20) | (4 << 24) | (1 << 28);
}


uart.c

 

 

#define GPA0CON		*((volatile unsigned int *)0xE0200000)
#define ULCON0 		*((volatile unsigned int *)0xE2900000)
#define UCON0 		*((volatile unsigned int *)0xE2900004)
#define UFCON0 		*((volatile unsigned int *)0xE2900008)
#define UTRSTAT0 	*((volatile unsigned int *)0xE2900010)
#define UTXH0  		*((volatile unsigned int *)0xE2900020)
#define URXH0 		*((volatile unsigned int *)0xE2900024)
#define UBRDIV0 	*((volatile unsigned int *)0xE2900028)
#define UDIVSLOT0	*((volatile unsigned int *)0xE290002C)

/*
** UART0初始化
*/
void uart_init()
{
	/*
	** 配置GPA0_0为UART_0_RXD
	** 配置GPA0_1为UART_0_TXD
	*/
	GPA0CON &= ~0xFF;
	GPA0CON |= 0x22;

	/* 8-bits/One stop bit/No parity/Normal mode operation */
	ULCON0 = 0x3 | (0 << 2) | (0 << 3) | (0 << 6);

	/* Interrupt request or polling mode/Normal transmit/Normal operation/PCLK/*/
	UCON0 = 1 | (1 << 2) | (0 << 10);

	/* 静止FIFO */
	UFCON0 = 0;

	/*
	** 波特率计算:115200bps
	** PCLK = 66MHz
	** DIV_VAL = (66000000/(115200 x 16))-1 = 35.8 - 1 = 34.8
	** UBRDIV0 = 34 (DIV_VAL的整数部分)
	** (num of 1's in UDIVSLOTn)/16 = 0.8
	** (num of 1's in UDIVSLOTn) = 12
	** UDIVSLOT0 = 0xDDDD (查表)
	*/
	UBRDIV0 = 34;
	UDIVSLOT0 = 0xDDDD;
}

void uart_send_byte(unsigned char byte)
{
	while (!(UTRSTAT0 & (1 << 2)));	/* 等待发送缓冲区为空 */
	UTXH0 = byte;					/* 发送一字节数据 */		
}

unsigned char uart_recv_byte()
{
	while (!(UTRSTAT0 & 1));	/* 等待接收缓冲区有数据可读 */
	return URXH0;				/* 接收一字节数据 */		
}

void uart_send_string(char *str)
{
	char *p = str;
	while (*p)
		uart_send_byte(*p++);
}


main.c

 

 

#define GPC0CON		*((volatile unsigned int *)0xE0200060)
#define GPC0DAT		*((volatile unsigned int *)0xE0200064)

void delay(volatile unsigned int t)
{
	volatile unsigned int t2 = 0xFFFF;
	while (t--)
		for (; t2; t2--);
}

int main()
{
	int byte;

	GPC0CON &= ~(0xFF << 12);
	GPC0CON |= 0x11 << 12;		// 配置GPC0_3和GPC0_4为输出
	GPC0DAT &= ~(0x3 << 3);		// 熄灭LED1和LED2

	uart_send_string("\r\nUART Test in S5PV210\r\n");

	while (1)
	{
		uart_send_string("\r\n1.LED1 Toggle\r\n");
		uart_send_string("\r\n2.LED2 Toggle\r\n");
		uart_send_string("\r\nPlease select 1 or 2 to Toggle the LED\r\n");
		byte = uart_recv_byte();
		uart_send_byte(byte);

		if (byte == '1')
			GPC0DAT ^= 1 << 3;		// 改变LED1的状态
		else if (byte == '2')
			GPC0DAT ^= 1 << 4;		// 改变LED2的状态
	}
	return 0;
}


Makefile

 

 

uart.bin: start.o clock.o uart.o main.o
	arm-linux-ld -Ttext 0xD0020010 -o uart.elf $^
	arm-linux-objcopy -O binary uart.elf $@
	arm-linux-objdump -D uart.elf > uart.dis
	
%.o : %.c
	arm-linux-gcc -c $< -o $@
%.o : %.S
	arm-linux-gcc -c $< -o $@
	
clean:
	rm *.o *.elf *.bin *.dis


程序烧写步骤见前面章节。

 

转载请注明来源:http://blog.csdn.net/zjhsucceed_329/

 

posted on 2013-10-16 12:12  云编程的梦  阅读(326)  评论(0编辑  收藏  举报

导航