CopyOnWriteArrayList
CopyOnWriteArrayList是ArrayList的线程安全版本,内部也是通过数组实现,每次对数组的修改都完全拷贝一份新的数组来修改,修改完了再替换掉老数组,这样保证了只阻塞写操作,不阻塞读操作,实现读写分离。
关键属性
/** 用于修改时加锁 */ transient表示不自动序列化 final transient ReentrantLock lock = new ReentrantLock(); /** 真正存储元素的地方,只能通过getArray()/setArray()访问 */ volatile表示一个线程对这个字段的修改对另外一个一个线程立即可见 private transient volatile Object[] array;
添加一个元素到指定索引处:
public void add(int index, E element) { final ReentrantLock lock = this.lock; // 加锁 lock.lock(); try { // 获取旧数组 Object[] elements = getArray(); int len = elements.length; // 检查是否越界, 可以等于len if (index > len || index < 0) throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+len); Object[] newElements; int numMoved = len - index; if (numMoved == 0) // 如果插入的位置是最后一位 // 那么拷贝一个n+1的数组, 其前n个元素与旧数组一致 newElements = Arrays.copyOf(elements, len + 1); else { // 如果插入的位置不是最后一位 // 那么新建一个n+1的数组 newElements = new Object[len + 1]; // 拷贝旧数组前index的元素到新数组中 System.arraycopy(elements, 0, newElements, 0, index); // 将index及其之后的元素往后挪一位拷贝到新数组中 // 这样正好index位置是空出来的 System.arraycopy(elements, index, newElements, index + 1, numMoved); } // 将元素放置在index处 newElements[index] = element; setArray(newElements); } finally { // 释放锁 lock.unlock(); } }
过程:
(1)加锁;
(2)检查索引是否合法,如果不合法抛出IndexOutOfBoundsException异常,注意这里index等于len也是合法的;
(3)如果索引等于数组长度(也就是数组最后一位再加1),那就拷贝一个len+1的数组;
(4)如果索引不等于数组长度,那就新建一个len+1的数组,并按索引位置分成两部分,索引之前(不包含)的部分拷贝到新数组索引之前(不包含)的部分,索引之后(包含)的位置拷贝到新数组索引之后(不包含)的位置,索引所在位置留空;
(5)把索引位置赋值为待添加的元素;
(6)把新数组赋值给当前对象的array属性,覆盖原数组;
(7)解锁;
根据索引获取一个元素:支持随机访问
public E get(int index) { // 获取元素不需要加锁 // 直接返回index位置的元素 // 这里是没有做越界检查的, 因为数组本身会做越界检查 return get(getArray(), index); } final Object[] getArray() { return array; } private E get(Object[] a, int index) { return (E) a[index]; }
size()方法:
public int size() { // 获取元素个数不需要加锁 // 直接返回数组的长度 return getArray().length; }
为什么CopyOnWriteArrayList没有size属性?
因为每次修改都是拷贝一份正好可以存储目标个数元素的数组,所以不需要size属性了,数组的长度就是集合的大小,而不像ArrayList数组的长度实际是要大于集合的大小的。
比如,add(E e)操作,先拷贝一份n+1个元素的数组,再把新元素放到新数组的最后一位,这时新数组的长度为len+1了,也就是集合的size了。
CopyOnWriteArrayList的特点:
写时阻塞,写时加锁,读不阻塞,对于有大量的读,少量的写,这种情况是比较好的。
它的缺点:
内存占用问题。因为CopyOnWrite的写时复制机制,所以在进行写操作的时候,内存里会同时驻扎两个对象的内存,旧的对象和新写入的对象(注意:在复制的时候只是复制容器里的引用,只是在写的时候会创建新对象添加到新容器里,而旧容器的对象还在使用,所以有两份对象内存)。如果这些对象占用的内存比较大,比如说200M左右,那么再写入100M数据进去,内存就会占用300M,那么这个时候很有可能造成频繁的Yong GC和Full GC。之前我们系统中使用了一个服务由于每晚使用CopyOnWrite机制更新大对象,造成了每晚15秒的Full GC,应用响应时间也随之变长。
针对内存占用问题,可以通过压缩容器中的元素的方法来减少大对象的内存消耗,比如,如果元素全是10进制的数字,可以考虑把它压缩成36进制或64进制。或者不使用CopyOnWrite容器,而使用其他的并发容器,如ConcurrentHashMap。
数据一致性问题。CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。所以如果你希望写入的的数据,马上能读到,请不要使用CopyOnWrite容器。
本文来自博客园,作者:LeeJuly,转载请注明原文链接:https://www.cnblogs.com/peterleee/p/10659214.html

浙公网安备 33010602011771号