LFM信号由于其具有较大的带宽时宽积,广泛应用于现代雷达系统中。频率线性地向上或向下扫过脉冲宽带,以向上线性调频为例,LFM 信号可以表示为
\[x\left(t\right)= exp(j2\pi(f_0t+\frac{\mu}{2}t^2))\text{Rect}\left(\frac{t}{\tau_0}\right)
\tag{1}
\]
其中,\(\text{Rect}\left(\frac{t}{\tau_0}\right)\)表示宽带为\(\tau_0\)的矩形脉冲,该式为线性调频信号的解析信号。其频谱主要由\(exp(j\pi\mu t^2)\text{Rect}\left(\frac{t}{\tau_0}\right)\)决定,而\(exp(j2\pi f_0t)\)相当于对频谱引入了关于中心频率为\(f_0\)的频移。
考虑基带LFM信号,调频信号的频率范围从\(f_0\to f_0+\mu\tau_0\),故\(f_0\)可设置为\(-\frac{\mu\tau_0}{2}\).设LFM信号的带宽为\(B\),求得下列信号的傅里叶变换,即
\[\begin{aligned}
\hat{X}(f)&=\int_{-\infty}^{+\infty}exp(j\pi\mu t^2)\text{Rect}\left(\frac{t}{\tau_0}\right)e^{-j2\pi ft}dt\\
&=\int_{-\frac{\tau_0}{2}}^{\frac{\tau_0}{2}}e^{j\pi\mu t^2}e^{-j2\pi ft}df
\end{aligned}
\tag{2}
\]
考虑菲涅耳积分的形式,进行变量代换,设\(\mu'=\pi\mu\),令\(z=\sqrt{\frac{2}{\pi}}\left(\sqrt{\mu'}t-\frac{\pi f}{\sqrt{\mu'}}\right)\),并且有\(dt=\sqrt{\frac{\pi}{2\mu'}}dz\),式(2)可以改写为
\[\begin{aligned}
\hat{X}(f)&=\sqrt{\frac{\pi}{2\mu'}}e^{-j(\pi f)^2/\mu'}\int_{-z_1}^{z_2}e^{j\pi z^2/2}dz\\
&=\sqrt{\frac{\pi}{2\mu'}}e^{-j(\pi f)^2/\mu'}\left\{\int_{0}^{z_1}e^{j\pi z^2/2}+\int_0^{z_2}e^{j\pi z^2/2}\right\}\\
z_1 &=-\sqrt{\frac{2\mu'}{\pi}}\left(\frac{\tau_0}{2}+\frac{\pi f}{\mu'}\right)=\sqrt{\frac{B\tau_0}{2}}\left(1+\frac{f}{B/2}\right)\\
z_2 &=\sqrt{\frac{2\mu'}{\pi}}\left(\frac{\tau_0}{2}-\frac{f}{\mu}\right)=\sqrt{\frac{B\tau_0}{2}}\left(1-\frac{f}{B/2}\right)\\
\end{aligned}
\tag{3}
\]
利用\(C(z),S(z)\)表示菲涅尔(Fresnel)积分,定义为
\[C(z)=\int_0^zcos(\frac{\pi v^2}{2})dv\\
S(z)=\int_0^zsin(\frac{\pi v^2}{2})dv
\tag{4}
\]
有\(C(-z)=-C(z),S(-z)=-S(z)\),其中,若\(z >> 1\),菲涅尔积分可近似表示为
\[C(z)\approx\frac{1}{2}+\frac{1}{\pi z}sin(\frac{\pi}{2}z^2)\\
S(z)\approx\frac{1}{2}-\frac{1}{\pi z}cos(\frac{\pi}{2}z^2)
\tag{5}
\]
进而可得到\(\hat{X}(f)\)的频谱为
\[\hat{X}(f)=\sqrt{\frac{\pi}{2\mu'}}e^{-j(\pi f)^2/(\mu')}\left\{[C(z_1)+C(z_2)]+j[S(z_1)+S(z_2)]\right\}\\
=\sqrt{\frac{1}{2\mu}}e^{-j(\pi f)^2/(\mu')}\left\{[C(z_1)+C(z_2)]+j[S(z_1)+S(z_2)]\right\}
\tag{6}
\]
令时宽带宽积为\(Q=B\tau_0\),若该值较大,从式(6)中可以推导,当频段处于调频信号的频段,即\(-B/2\sim B/2\),此时\(z_1\)和\(z_2\)近似相等,且此时\(C(z_1),C(z_2),S(z_1),S(z_2)\)均近似等于1/2, LFM信号的频谱幅值近似等于 \(\sqrt{\frac{1}{\mu}}\),当频段远大于B/2或远小于-B/2时,\(z_1,z_2\)可近似认为互为相反数,于是其频谱幅值近似为0.后续仿真可验证此结论。