Search for a Range
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
边界条件很恶心。
主要思想是:
1.左边界的前一个数要小于target,右边界的后一个数要大于target
2.如果没有边界左(右)的数,则可以直接返回
class Solution {
public:
vector<int> searchRange(int A[], int n, int target) {
vector<int> re;
re.push_back(-1);
re.push_back(-1);
if(n < 1)
{
return re;
}
re[0]=findleft(A,n,target);
re[1]=findright(A,n,target);
return re;
}
int findleft(int A[],int n,int target)
{
int left = 0;
int right = n-1;
if(A[0]==target)return 0;
while(left <= right)
{
int mid = left + (right - left)/2;
if(A[mid] == target &&( mid-1 >=0 &&A[mid-1] < target|| mid ==0))return mid;
if(A[mid] >= target )//&& mid-1 >=0 &&A[mid-1] == target)
{
right = mid -1;
}
else if(A[mid] < target)
{
left = mid+1;
}
}
return -1;
}
int findright(int A[],int n,int target)
{
int left = 0;
int right = n-1;
if(A[n-1]==target)return n-1;
while(left <= right)
{
int mid = left + (right - left)/2;
if(A[mid] == target && (mid+1 <n &&A[mid+1] > target || mid+1 == n))return mid;
if(A[mid] > target )
{
right = mid -1;
}
else if(A[mid] <= target )//&& mid+1<n && A[mid+1]==target )
{
left = mid+1;
}
}
return -1;
}
};
posted on 2014-04-15 22:24 pengyu2003 阅读(108) 评论(0) 收藏 举报
浙公网安备 33010602011771号