Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
动态规划,填格子。空间不是问题。
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
vector<vector<int> >path (triangle);
for(int i = 1 ; i < triangle.size();i++)
{
for(int j = 0 ; j <=i ; j ++)
{
if(j <= i-1 && j > 0) path[i][j] = min(path[i-1][j-1],path[i-1][j])+triangle[i][j];
else if(j > i-1 && j!=0) path[i][j] = path[i-1][j-1]+triangle[i][j];
else path[i][j]= path[i-1][j] +triangle[i][j];
}
}
int min = path[triangle.size()-1][0];
for(int i = 1 ; i < triangle.size();i++)
{
if(path[triangle.size()-1][i] < min)min = path[triangle.size()-1][i];
}
return min;
}
};
posted on 2014-03-19 16:19 pengyu2003 阅读(168) 评论(0) 收藏 举报
浙公网安备 33010602011771号