回溯经典-二十四点算法
#include <iostream>
#include <string>
#include <cmath> 
using namespace std; 
const double PRECISION = 1E-6;
const int COUNT_OF_NUMBER = 4;
const int NUMBER_TO_BE_CAL = 24; 
double number[COUNT_OF_NUMBER];
string expression[COUNT_OF_NUMBER]; 
bool Search(int n)
{
if(n==1)
{
if(fabs(number[0]-NUMBER_TO_BE_CAL) < PRECISION)
{
cout<<expression[0]<<endl;
return true;
}
else
{
return false;
}
}
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
double a, b;
string expa, expb;
a = number[i];
b = number[j];
number[j] = number[n - 1];
expa = expression[i];
expb = expression[j];
expression[j] = expression[n - 1];
expression[i] = '(' + expa + '+' + expb + ')';
number[i] = a + b;
if ( Search(n - 1) ) return true;
expression[i] = '(' + expa + '-' + expb + ')';
number[i] = a - b;
if ( Search(n - 1) ) return true;
expression[i] = '(' + expb + '-' + expa + ')';
number[i] = b - a;
if ( Search(n - 1) ) return true;
expression[i] = '(' + expa + '*' + expb + ')';
number[i] = a * b;
if ( Search(n - 1) ) return true;
if (b != 0) {
expression[i] = '(' + expa + '/' + expb + ')';
number[i] = a / b;
if ( Search(n - 1) ) return true;
}
if (a != 0) {
expression[i] = '(' + expb + '/' + expa + ')';
number[i] = b / a;
if ( Search(n - 1) ) return true;
}
number[i] = a;
number[j] = b;
expression[i] = expa;
expression[j] = expb;
}
}
return false;
} 
void main()
{
for(int i = 0;i< COUNT_OF_NUMBER;i++)
{
char buffer[20];
int x;
cin >> x;
number[i]= x;
itoa(x, buffer, 10);
expression[i] = buffer;
}

if(Search(COUNT_OF_NUMBER))
{
cout << "Success." << endl;
} else {
cout << "Fail." << endl;
}
}

浙公网安备 33010602011771号