Python学习 Day8-1 Python3 迭代器与生成器、yield使用

Python3 迭代器与生成器

迭代器

迭代是Python最强大的功能之一,是访问集合元素的一种方式。

迭代器是一个可以记住遍历的位置对象

迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

迭代器有两个基本的方法:iter() 和 next()

字符串,列表或元组对象都可用于创建迭代器:

>>>list=[1,2,3,4]
>>> it = iter(list)    # 创建迭代器对象
>>> print (next(it))   # 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>>

迭代器对象可以使用常规for语句进行遍历:

#!/usr/bin/python3
 
list=[1,2,3,4]
it = iter(list)    # 创建迭代器对象
for x in it:
    print (x, end=" ")

执行以上程序,输出结果如下(在 for 循环里,无需处理 StopIteration 异常,循环会正常结束):

1 2 3 4

也可以使用 next() 函数

#!/usr/bin/python3
 
import sys         # 引入 sys 模块
 
list=[1,2,3,4]
it = iter(list)    # 创建迭代器对象
 
while True:
    try:
        print (next(it))
    except StopIteration:
        sys.exit()

执行以上程序,输出结果如下:

1
2
3
4

生成器

在 Python 中,使用了 yield 的函数被称为生成器(generator)

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。

调用一个生成器函数,返回的是一个迭代器对象。

以下实例使用 yield 实现斐波那契数列:

#!/usr/bin/python3
 
import sys
 
def fibonacci(n): # 生成器函数 - 斐波那契
    a, b, counter = 0, 1, 0
    while True:
        if (counter > n): 
            return
        yield a
        a, b = b, a + b
        counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
 
while True:
    try:
        print (next(f), end=" ")
    except StopIteration:
        sys.exit()

执行以上程序,输出结果如下:

0 1 1 2 3 5 8 13 21 34 55

Python yield 使用浅析

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数

def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        print b 
        a, b = b, a + b 
        n = n + 1
fab(5)

执行以上代码,我们可以得到如下输出:

1 
1 
2 
3 
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

def fab(max): 
    n, a, b = 0, 0, 1 
    L = [] 
    while n < max: 
        L.append(b) 
        a, b = b, a + b 
        n = n + 1 
    return L
 
for n in fab(5): 
    print n

可以使用如下方式打印出 fab 函数返回的 List:

1 
1 
2 
3 
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

for i in range(1000): pass

导致生成一个 1000 个元素的 List,而代码:

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable(迭代) 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

class Fab(object): 
 
    def __init__(self, max): 
        self.max = max 
        self.n, self.a, self.b = 0, 0, 1 
 
    def __iter__(self): 
        return self 
 
    def next(self): 
        if self.n < self.max: 
            r = self.b 
            self.a, self.b = self.b, self.a + self.b 
            self.n = self.n + 1 
            return r 
        raise StopIteration()
 
for n in Fab(5): 
    print n

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

1 
1 
2 
3 
5

python之__iter__函数与__next__函数

容器(container)

容器是用来储存元素的一种数据结构,容器将所有数据保存在内存中,Python中典型的容器有:list,set,dict,str等等。

class test():
    def __init__(self,data=1):
        self.data = data

    def __iter__(self):
        return self
    def __next__(self):
        if self.data > 5:
            raise StopIteration
        else:
            self.data+=1
            return self.data

for item in test(3):
    print(item)
4
5
6

for … in… 这个语句其实做了两件事。第一件事是获得一个可迭代器,即调用了__iter__()函数。 
第二件事是循环的过程,循环调用__next__()函数

对于test这个类来说,它定义了__iter__和__next__函数,所以是一个可迭代的类,也可以说是一个可迭代的对象(Python中一切皆对象)

迭代器

含有__next__()函数的对象都是一个迭代器,所以test也可以说是一个迭代器。如果去掉__itet__()函数,test这个类也不会报错。如下代码所示:

class test():
    def __init__(self,data=1):
        self.data = data

    def __next__(self):
        if self.data > 5:
            raise StopIteration
        else:
            self.data+=1
            return self.data

t = test(3)   
for i in range(3):
    print(t.__next__())
4
5
6

生成器

生成器是一种特殊的迭代器。当调用fib()函数时,生成器实例化并返回,这时并不会执行任何代码,生成器处于空闲状态,注意这里prev, curr = 0, 1并未执行。然后这个生成器被包含在list()中,list会根据传进来的参数生成一个列表,所以它对fib()对象(一切皆对象,函数也是对象)调用__next()__方法

def fib(end = 1000):
    prev,curr=0,1
    while curr < end:
        yield curr
        prev,curr=curr,curr+prev


print(list(fib()))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        yield b      # 使用 yield
        # print b 
        a, b = b, a + b 
        n = n + 1
 
for n in fab(5): 
    print n

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

1 
1 
2 
3 
5

简单地讲,yield 的作用就是把一个函数变成一个 generator(生成器),带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator(生成器),调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable (迭代)对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

>>>f = fab(5) 
>>> f.next() 
1 
>>> f.next() 
1 
>>> f.next() 
2 
>>> f.next() 
3 
>>> f.next() 
5 
>>> f.next() 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator(生成器),它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

>>>from inspect import isgeneratorfunction 
>>> isgeneratorfunction(fab) 
True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

>>>import types 
>>> isinstance(fab, types.GeneratorType) 
False 
>>> isinstance(fab(5), types.GeneratorType) 
True

fab 是无法迭代的,而 fab(5) 是可迭代的:

>>>from collections import Iterable 
>>> isinstance(fab, Iterable) 
False 
>>> isinstance(fab(5), Iterable) 
True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响

>>>f1 = fab(3) 
>>> f2 = fab(5) 
>>> print 'f1:', f1.next() 
f1: 1 
>>> print 'f2:', f2.next() 
f2: 1 
>>> print 'f1:', f1.next() 
f1: 1 
>>> print 'f2:', f2.next() 
f2: 1 
>>> print 'f1:', f1.next() 
f1: 2 
>>> print 'f2:', f2.next() 
f2: 2 
>>> print 'f2:', f2.next() 
f2: 3 
>>> print 'f2:', f2.next() 
f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

python yield 与 yield from

1、yield使用 

1)函数中使用yield,可以使函数变成生成器。一个函数如果是生成一个数组,就必须把数据存储在内存中,如果使用生成器,则在调用的时候才生成数据,可以节省内存。 
2)生成器方法调用时,不会立即执行。需要调用next()或者使用for循环来执行。使用for循环不需要自己捕获StopIteration异常。使用next()方法,当生产器方法执行结束会抛出StopIteration异常(只要不是使用yield返回数据,都会抛出StopIteration异常)。 
示例:

def fib(max):
    n,a,b = 0,0,1
    while n < max:
        yield b
        a, b = b, a+b
        n = n + 1
    return 'done'

n = fib(10)
for n1 in n:
    print(n1)

3)yield不仅可以返回值,也可以接收值。下面面示例为生产消费模式。生产者生产一条记录,消费者消费一条记录。 
4)调用生成器send方法传递数据时,必须先调用next(c)或者c.send(None)方法,执行到yield语句,等待接收数据。否则会报错。 

def consumer():
    r = ''
    while True:
        n = yield r
        if not n:
            return
        print('[CONSUMER] Consuming %s...' % n)
        r = '200 OK'


def produce(c):
    c.send(None)  # 和next方法一样 获取下一个值,必须先使用None参数调用一次, 执行到yield
    n = 0
    while n < 5:
        n = n + 1
        print('[PRODUCER] Producing %s...' % n)
        r = c.send(n)  # 先发送值给yield语句,再执行到yield语句时返回
        print('[PRODUCER] Consumer return:%s' % r)
    c.close()

c = consumer()
produce(c)

2、yield from的使用 
1)为了让生成器(带yield函数),能简易的在其他函数中直接调用,就产生了yield from。 
2)以下代码,htest为生成器,itest通过yield from 直接调用htest。这样itest也变成了一个生成器。创建itest实例不断的去获取数据,当生成器执行结束时,会抛出StopIteration异常。那这个异常是htest抛出的,还是itest抛出的。通过捕获异常,会发现其实是itest抛出异常,htest并不会抛出StopIteration异常。 
3)yield from 也可以返回值,通过变量接收。变量接收的值,即htest使用return返回的值。示例代码中,当i==3时,会直接使用return返回,这时val的值就是100;因为htest函数中不是使用yield返回值,所以itest会继续执行print(val)语句。itest代码执行完,然而并没有使用yield返回数据(htest中没有,itest中也没有),所以马上会抛出StopIteration异常)(如果在itest函数最后使用yield返回一个数据,就不会抛出异常)。

def htest():
    i = 1
    while i < 4:
        n = yield i
        if i == 3:
            return 100
        i += 1


def itest():
    val = yield from htest()
    print(val)

t = itest()
t.send(None)
j = 0
while j < 3:
    j += 1
    try:
        t.send(j)
    except StopIteration as e:
        print('异常了')

 

posted @ 2018-04-16 10:33  paulzhang511  阅读(228)  评论(0)    收藏  举报