Python简单分布式爬虫
分布式爬虫采用主从模式。主从模式是指由一台主机作为控制节点,负责管理所有运行网络爬虫的主机(url管理器,数据存储器,控制调度器),爬虫只需要从控制节点哪里接收任务,并把新生成任务提交给控制节点。此次使用三台主机进行分布式爬取,一台主机作为控制节点,另外两台主机作为爬虫节点。
控制节点主要分为url管理器、数据存储器和控制调度器。控制调度器通过三个进程来协调URL管理器和数据存储器的工作:一个是URL管理进程,负责URL的管理和将URL传递给爬虫节点,一个是数据提取进程,负责读取爬虫节点返回的数据,将返回数据中的URL交给URL管理进程,数据存储进程,负责将数据提取进程中提交的数据进行本地存储。
url管理器
# coding:utf-8
try :
   import cPickle as pickle
except ImportError:
   import pickle
#cPickle引用序列化包
import hashlib
class UrlManager(object):
    def __init__(self):
        self.new_urls = self.load_progress('new_urls.txt')  # 未爬取URL集合
        self.old_urls = self.load_progress('old_urls.txt')  # 已爬取URL集合
    def has_new_url(self):
        # 判断是否有未爬取的URL
return self.new_url_size() != 0
    def get_new_url(self):
        # 获取一个未爬取的URL
        new_url = self.new_urls.pop()
        m = hashlib.md5()#对url进行MD5加密
        m.update(new_url)
        self.old_urls.add(m.hexdigest()[8:-8])#
        return new_url
    def add_new_url(self, url):
        # 将新的URL添加到未爬取的URL结合中
        if url is None:
            return
        m = hashlib.md5()
        m.update(url)
        url_md5 = m.hexdigest()[8:-8]
        if url not in self.new_urls and url_md5 not in self.old_urls:
            self.new_urls.add(url)  # 将新的url添加到列表中
    # 批量添加url
    def add_new_urls(self, urls):
        # 将新的URL添加到未爬取的URL集合中
        if urls is None or len(urls) == 0:
            return
        for url in urls:
            self.add_new_url(url)
    # 获取未爬取url集合的大小
    def new_url_size(self):
        return len(self.new_urls)
    # 获取已经爬取URL集合的大小
    def old_url_size(self):
        return len(self.old_urls)
    #保存进度
    #param path:文件路径
    #param data:数据
    # return:
    def save_progress(self, path, data):
         with open(path, 'wb') as f:
            pickle.dump(data, f)
    #从本地文件加载进度
    #param path 文件路径
    #return set集合
    def load_progress(self, path):
         print '[+]从文件加载进度:%s' %path
         try:
             with open(path,'rb') as f:
                 tmp = pickle.load(f)
                 return tmp
         except:
print '[!]无进度文件,创建:%s' % path
return set()
数据存储器
# coding:utf-8
import codecs
import sys
import time
from urllib import unquote
class DataOutput(object):
    def __init__(self):
        self.filepath ='baike_%s.html'%(time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()))
        self.output_head(self.filepath)
        self.datas = []
def store_data(self, data):
        if data is None:
            return
        self.datas.append(data)
        if len(self.datas)>10:
            self.output_html(self.filepath)
    #将HTML头写进去
    #param path:保存路径
    def output_head(self, path):
        fout = codecs.open(path, 'w', encoding = 'uft-8')
        fout.write("<html>")
        fout.write("<body>")
        fout.write("<table>")
        fout.close()
     #将数据写入HTML文件中
     #param path:文件路径
    def output_html(self,path):
        fout = codecs.open(path, 'w', encoding = 'utf-8')
        for data in self.datas:
            fout.write("<tr>")
            fout.write("<td>%s</td>" % data['url'])
            fout.write("<td>%s</td>" % data['title'])
            fout.write("<td>%s</td>" % data['summary'])
            fout.write("</tr>")
            self.datas.remove(data)
        fout.close()
     #输出HTML结束
     #param path文件存储路径
    def output_end(self,path):
        fout = codecs.open(path, 'a', encoding = 'utf-8')
        fout.write("</table>")
        fout.write("</body>")
        fout.write("</html>")
        fout.close()
控制调度器
# coding:utf-8
import time, sys, Queue
import multiprocessing
from multiprocessing.managers import BaseManager
from UrlManager import UrlManager
from DataOutput import DataOutput
class  QueueManager(BaseManager):
    pass
class NodeManager(object):
    # 创建一个分布式管理器
    # param:url_q url队列
    # param result_q 结果队列
    def start_Manager(self, url_q, result_q):
        # 把创建的两个队列注册在网络上,利用register方法,callable参数关联了Queue对象
        # 将Queue对象在网络中暴露
        QueueManager.register('get_task_queue', callable=lambda: url_q)
        QueueManager.register('get_result_queue', callable=lambda: result_q)
        # 绑定端口8001,设置验证口令"baike"
        manger = BaseManager(address=('', 8001), authkey='baike')
        # 返回manager对象
        return manger
    def url_manager_proc(self, url_q, conn_q, root_url):
        url_manager = UrlManager()
        url_manager.add_new_url(root_url)
        while True:
            # 从URL管理器获取新的URL
            while (url_manager.has_new_url()):
                new_url = url_manager.get_new_url()
                # 将新的URL发给工作节点
                url_q.put(new_url)
                print 'old_url=', url_manager.old_url_size()
                if (url_manager.old_url_size() > 2000):
                    # 通知爬虫节点工作结束
                    url_q.put('end')
                    print '控制节点发起结束通知!'
                    # 关闭管理节点,同时存储set状态
                    url_manager.save_progress('new_urls.txt', url_manager.new_urls)
                    url_manager.save_progress('old_urls.txt', url_manager.old_urls)
                    return
try:
                    if not conn_q.empty():
                        urls = conn_q.get()
                        url_manager.add_new_urls(urls)
                except BaseException, e:
                    time.sleep(0.1)  # 延时休息
    def result_solve_proc(self, result_q, conn_q, store_q):
        while (True):
            try:
                if not result_q.empty():
                    content = result_q.get(True)
                    if content['new_urls'] == 'end':
                        print  '结果分析进程接收通知然后结束!'
                        store_q.put('end')
                        return
                    conn_q.put(content['new_urls'])  # url为set类型
                    store_q.put(content['data'])  # 解析出来的数据为dict类型
                else:
                    time.sleep(0.1)  # 延时休息
            except BaseException, e:
                time.sleep(0.1)  # 延时休息
    def store_proc(self, store_q):
        output = DataOutput()
        while True:
            if not store_q.empty():
                data = store_q.get()
                if data == 'end':
                    print '存储进程接受通知然后结束'
                    output.ouput_end(output.filepath)
                    return
            output.store_data(data)
        else:
            time.sleep(0.1)
if __name__ == '__main__':
        # 初始化4个队列
        url_q = Queue.Queue()
        result_q = Queue.Queue()
        store_q = Queue.Queue()
        conn_q = Queue.Queue()
        # 创建分布式管理器
        node = NodeManager()
        manager = node.start_Manager(url_q, result_q)
        # 创建URL管理进程、数据提取进程和数据存储进程
        url_manager_proc = multiprocessing.Process(target=node.url_manager_proc, args=(url_q, conn_q, 'https://baike.baidu.com/item/%E7%BD%91%E7%BB%9C%E7%88%AC%E8%99%AB/5162711?fr=aladdin&fromid=22046949&fromtitle=%E7%88%AC%E8%99%AB'))
        result_solve_proc = multiprocessing.Process(target=node.result_solve_proc, args=(result_q, conn_q, store_q))
        # 启动3个进程和分布式管理器
        url_manager_proc.start()
        result_solve_proc.start()
        manager.get_server().serve_forever()
HTML下载器
# coding:utf-8
import requests
import urllib2
import sys
type = sys.getfilesystemencoding()
class HtmlDownloader(object):
def download(slef, url):
        if url is None:
            return None
user_agent = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
        headers = {'User-Agent': user_agent}
        req = urllib2.Request(url, headers=headers)
        response = urllib2.urlopen(req)
        if response.getcode() == 200:
            html = response.read().decode("UTF-8").encode(type)
            return html
        return None
HTML解析器
# coding:utf-8
import re
import urlparse
from bs4 import BeautifulSoup
class HtmlParser(object):
    # page_url下载页面的URL
    # html_cont 下载的网页内容
    # 返回URL和数据
    def parser(self, page_url, html_cont):
        if page_url is None or html_cont is None:
            return
soup = BeautifulSoup(html_cont, 'html.parser')
        new_urls = self._get_new_urls(page_url, soup)
        new_data = self._get_new_data(page_url, soup)
return new_urls, new_data
    # page_url下载页面的url
    # soup:soup
    # 返回新的URL集合
    def _get_new_urls(self, page_url, soup):
        new_urls = set()
        # 抽取符合要求的a标记
        links = soup.find_all('a', href=re.compile(r'/item/.*'))
        for link in links:
            # 提取href属性
            new_url = link['href']
            # 拼接成完整网址
            new_full_url = urlparse.urljoin(page_url, new_url)
            new_urls.add(new_full_url)
return new_urls
    # 下载页面的url
    def _get_new_data(self, page_url, soup):
        data = {}
        data['url'] = page_url
        title = soup.find('dd', class_='lemmaWgt-lemmaTitle-title').find('h1')
        data['title'] = title.get_text()
        summary = soup.find('div', class_='lemma-summary')
        # 获取tag中包含的所有文本内容,包括子孙tag中的内容,并将结果作为Unicode字符串返回
        data['summary'] = summary.get_text()
return data
爬虫调度器
# coding:utf-8
import time, sys, Queue
from multiprocessing.managers import BaseManager
from UrlManager import UrlManager
from DataOutput import DataOutput
from HtmlDownloader import HtmlDownloader
from HtmlParser import HtmlParser
class SpoderWork(object):
    def __init__(self):
       #初始化分布式进程中工作节点的连接工作
       #实现第一步:使用BaseManager注册用于获取Queue的方法名称
       BaseManager.register('get_task_queue')
       BaseManager.register('get_result_queue')
       #实现第二步:连接到服务器
       server_addr = '127.0.0.1'
       print ('Connect to server %s....' % server_addr)
       self.m = BaseManager(address=(server_addr,8001),authkey='baike')
       #从网络连接
       self.m.connect()
       #实现第三步:获取Queue对象
       self.task  = self.m.get_task_queue()
       self.result = self.m.get_result_queue()
       #初始化网页下载器和解析器
       self.downloader = HtmlDownloader()
       self.parser     = HtmlParser()
       print 'init finish'
    def  crawl(self):
        while(True):
            try:
                if not self.task.empty():
                    url = self.task.get()
if url=='end':
print '控制节点通知爬虫节点停止工作'
                       self.result.put({'new_urls':'end','data':'end'})
                       return
                    print '爬虫节点正在解析:%s' % url.encode('utf-8')
                    content = self.downloader.download(url)
                    new_urls,data = self.parser.parser(url,content)
                    self.result.put({'new_urls': new_urls, 'data': data})
except EOFError,e:
                print '连接工作节点失败'
                return
            except Exception,e:
                print e
                print 'Crawl fail'
if  __name__=='__main__':
    spider = SpoderWork()
    spider.crawl()
 
                    
                     
                    
                 
                    
                 
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号