同余关系 等价关系 同余关系的原型
小结:
https://baike.baidu.com/item/同余关系
https://en.wikipedia.org/wiki/Congruence_relation
https://en.wikipedia.org/wiki/Equivalence_relation
https://baike.baidu.com/item/等价关系
等价关系定义为:设R是非空集合A上的二元关系,若R是自反的、对称的、传递的,则称R是A上的等价关系。研究等价关系的目的在于将集合中的元素进行分类,选取每类的代表元素来降低问题的复杂度,如软件测试时,可利用等价类来选择测试用例。
The prototypical example of a congruence relation is congruence modulo   on the set of integers. For a given positive integer 
, two integers 
 and 
 are called congruent modulo 
, written
if  is divisible by 
 (or equivalently if  
 and 
 have the same remainder when divided by 
).
for example,  and 
 are congruent modulo 
,
since  is a multiple of 10, or equivalently since both  
 and 
 have a remainder of 
 when divided by  
.
Congruence modulo   (for a fixed  
) is compatible with both addition and multiplication on the integers. That is,
if
-  and 
then
-  and 
The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo   is a congruence relation on the ringof integers, and arithmetic modulo  
 occurs on the corresponding quotient ring.
 
                    
                
 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号