ConcurrentHashMap源码分析

简介

线程安全的hash表,支持并发的更新和检索。功能和hashtable相同。此类在java.lang.util.concurrent并发包中。

类图

在这里插入图片描述
此类 继承AbstractMap所以HashMap有的功能这里都会提供,实现了ConcurrentMap将会是并发安全的hash表。

属性

这里属性总体和HashMap相同,如果想了解HashMap可以去看我的另一篇文章。

    private static final int MAXIMUM_CAPACITY = 1 << 30; //最大槽位数量
    private static final int DEFAULT_CAPACITY = 16;	//默认槽位数量
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;	//最大可能的数组大小
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;	//默认并发级别
    private static final float LOAD_FACTOR = 0.75f;	//默认加载因子
    static final int TREEIFY_THRESHOLD = 8;	//树化阈值
    static final int UNTREEIFY_THRESHOLD = 6;	//反树化阈值
    static final int MIN_TREEIFY_CAPACITY = 64;	//树化前提 槽位不小于64
    private static final int MIN_TRANSFER_STRIDE = 16;
    private static int RESIZE_STAMP_BITS = 16;
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;//可以帮助调整大小的最大线程数
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
	/*
     * 节点特定的hash码
     */
    static final int MOVED     = -1; // forwarding节点的hash码 认为当前槽位正在被移动
    static final int TREEBIN   = -2; // 树的根节点hash码
    static final int RESERVED  = -3; // 预留的哈希码
    static final int HASH_BITS = 0x7fffffff; // 普通节点哈希的可用位
    static final int NCPU = Runtime.getRuntime().availableProcessors();//cpu的数量
    transient volatile Node<K,V>[] table;	//hash表、槽位
    private transient volatile Node<K,V>[] nextTable;
    private transient volatile long baseCount; //基本计数器值
    // 表初始化和大小调整控制。如果为负,则表正在初始化或调整大小:-1表示初始化,
    // 或者表示调整数量-(1 +活动的调整大小线程数)
    // 当table为null时,保留创建时的初始表大小(16)
    // 初始化后,保留下一次调整大小的阈值(16 - 16>>2 = 12),以在该值上调整表的大小。
    private transient volatile int sizeCtl;
    private transient volatile CounterCell[] counterCells; //表的计数格子,如果不是null就是2的n次方
    

内部类

static class Node<K,V> implements Map.Entry<K,V> {
	final int hash;
	final K key;
	volatile V val;
	volatile Node<K,V> next; //单链表
}

static final class TreeNode<K,V> extends Node<K,V> {
    TreeNode<K,V> parent;  // 红黑树父节点
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // 删除后需要取消链接(这是个单链表 串联了所有树节点)
    boolean red;
}

构造方法

// 使用默认的容量16 创建一个空的map
public ConcurrentHashMap() {
}
// 创建一个能够容纳指定容量的空map
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
    this(initialCapacity, loadFactor, 1);
}
// 初始容量、加载因子、并发数
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
    if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    if (initialCapacity < concurrencyLevel)   
        initialCapacity = concurrencyLevel;  //初始容量最少应为并发数
    long size = (long)(1.0 + (long)initialCapacity / loadFactor);
    int cap = (size >= (long)MAXIMUM_CAPACITY) ?
        MAXIMUM_CAPACITY : tableSizeFor((int)size);
    this.sizeCtl = cap;
}

获取 get

 public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        if ((eh = e.hash) == h) {  //如果第一个元素等于key 就返回
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        else if (eh < 0)  //如果hash码小于0说明正在扩容或者是树
        	//因为这时能确定e为树节点 这里find是调用的树节点实现
            return (p = e.find(h, key)) != null ? p.val : null; 
        // 如果不是第一个节点,并且第一个节点不是树节点  就遍历链表找元素
        while ((e = e.next) != null) {
            if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

移除 remove

public V remove(Object key) {
    return replaceNode(key, null, null); //调用替换节点值方法
}

final V replaceNode(Object key, V value, Object cv) {
    int hash = spread(key.hashCode()); //计算hash
    for (Node<K,V>[] tab = table;;) { //自旋
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0 ||
            (f = tabAt(tab, i = (n - 1) & hash)) == null) //如果表为空 或要删除的hash槽为空 返回null
            break;
        else if ((fh = f.hash) == MOVED) // 如果正在扩容迁移元素 当前线程帮助迁移
            tab = helpTransfer(tab, f);
        else { //没有特殊情况 就删除元素
            V oldVal = null;
            boolean validated = false;
            synchronized (f) {  // 分段锁 锁的一个槽位
                if (tabAt(tab, i) == f) { //再次检查槽位第一个元素是否变化 变化了 自旋进入下次循环
                    if (fh >= 0) { //hash>=0 说明是链表
                        validated = true;
                        for (Node<K,V> e = f, pred = null;;) { //遍历链表查找元素
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) { //找到了要删除元素
                                V ev = e.val;
                                if (cv == null || cv == ev ||  //如果cv == null 或者
                                    (ev != null && cv.equals(ev))) { //cv和oldValue相同 就去删除数据
                                    oldVal = ev;
                                    if (value != null)  // 传入value不等于空 替换旧值
                                        e.val = value;
                                    //如果传入value为空 而且不是第一节点 就将前面节点指向后面节点
                                    else if (pred != null) 
                                        pred.next = e.next;
                                    else  //如果是第一节点  直接设置槽位第一节点为第二个节点
                                        setTabAt(tab, i, e.next);
                                }
                                break;
                            }
                            pred = e;
                            if ((e = e.next) == null)
                                break;
                        }
                    }
                    else if (f instanceof TreeBin) { //如果是树型结构
                        validated = true;
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> r, p;
                        if ((r = t.root) != null &&
                            (p = r.findTreeNode(hash, key, null)) != null) { //遍历找到要删除的节点
                            V pv = p.val;
                            if (cv == null || cv == pv || //如果cv==null 或者cv和oldValue相等 删除
                                (pv != null && cv.equals(pv))) {
                                oldVal = pv;
                                if (value != null) //传入值 不等于空 替换旧值
                                    p.val = value;
                                else if (t.removeTreeNode(p)) //传入值等于空 将节点删除
                                    //removeTreeNode返回true 说明太小 应该取消树化 这句就直接设置桶位为链表
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
            }
            if (validated) { //处理过了
                if (oldVal != null) { //如果找到了元素 返回旧值
                	//如果传入value为空 说明删除了元素 baseCount-1 
                	//值得一提 看上面代码 value不为空 就会替换而不是删除
                    if (value == null) 
                        addCount(-1L, -1);
                    return oldVal; //返回旧值
                }
                break;
            }
        }
    }
    return null;
}

添加 put

public V put(K key, V value) {
    return putVal(key, value, false);
}
// onlyIfAbsent: false已经存在的元素 替换值
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode()); //调整hash码
    int binCount = 0; //计数器
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0) //桶未初始化 先初始化
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //要插入桶位没有元素 将当前元素插入
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null))) //cas循环插入
                break;                   // 添加到空槽时无锁
        }
        else if ((fh = f.hash) == MOVED) //如果要插入的槽位 正在迁移数据 当前线程帮忙迁移
            tab = helpTransfer(tab, f);
        else {	// 没有特殊情况 就上锁 添加数据
            V oldVal = null;
            synchronized (f) { //锁住槽位的第一个元素 这是分段锁
                if (tabAt(tab, i) == f) { //再次确认第一个元素没有变化  有变化进入下次循环
                    if (fh >= 0) { //hashcode>=0说明是链表
                        binCount = 1; //记录循环次数
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) { //找到了元素 要替换旧值
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) { //到最后还没找到元素 就插入最后
                                pred.next = new Node<K,V>(hash, key, value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) { //如果是树节点
                        Node<K,V> p;
                        binCount = 2;
                        // 调用树的put方法插入元素 如果有返回值 就替换旧值 返回空说明已经插入
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) { //不等于0说明已经插入 
                if (binCount >= TREEIFY_THRESHOLD)  //计数器大于树形化阈值
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    //成功插入元素后 将 元素个数baseCount+1 
    addCount(1L, binCount);  
    return null; //返回null
}

初始化桶

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) { //==0说明还未初始化
        //sizeCtl < 0说明其他线程正在初始化或者扩容 当前线程晚来了一步
        if ((sc = sizeCtl) < 0) //sizeCtl创建对象时 存的容量
            Thread.yield(); // 其他线程抢先初始化了 让出cpu
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { //cas乐观锁
        //如果设置-1失败 其他线程抢先了 进入下次循环
        //下次循环 其他线程设置-1 进行初始化了 让出cpu
        //下次循环 如果已经初始化完毕 table数组>0 依旧退出循环
        //这是自旋锁 不成功就重试 直到不满足条件结束
            try {
            	//再次验证table是否初始化
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    //比如tab.length=16 那么sc=12 是下次扩容门槛
                    //写死了0.75倍 这是和HashMap不一样的地方
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc; //扩容后sizeCtl存的是下次要扩容的阈值
            }
            break;
        }
    }
    return tab;
}

迁移元素

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    // nextTab为空 说明还没开始迁移 数组扩容一倍
    if (nextTab == null) {            // initiating
        try {
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    int nextn = nextTab.length;
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        // 改变了i的值 作用不清楚
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        // i 下标不合法 可能扩容完成了
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            // 如果已经扩容结束 替换旧数组 设置新的扩容阈值
            if (finishing) {
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            // 将扩容线程数 -1
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
            	// 扩容完成后 两边相等  注意扩容时sc 高位存储扩容邮戳 低位存储扩容线程数+1
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        // 下面就是迁移元素
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

添加后计数和判断扩容

// 添加过元素后调整baseCount大小
// x 调整数, check >= 0 检查是否需要扩容
private final void addCount(long x, int check) {
	// CounterCell(以下简称as)是多线程并发操作时 
	// 抢不到在baseCount操作权限时 就将数据放入这里
	// b 存储baseCount, s存储总计数
    CounterCell[] as; long b, s;
    // 如果as有数据,或者as没数据但是我更新basecount失败了
    // 都说明此时并发大,那么当前线程不操作basecount了 直接放到CounterCell里面
    if ((as = counterCells) != null ||
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        // 下面是将要扩容的数据放到as
        // 如果 as 等于空,as长度<=0,数据要插入的位置等于null,或者插入又失败了
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended =
              U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            // 这次更新又失败了 说明并发依然很大 这个时候就去扩容 as 数组
            fullAddCount(x, uncontended);
            return;
        }
        // 不检查就退出了
        if (check <= 1)
            return;
        // 计算现在节点总数
        s = sumCount();
    }
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);
            if (sc < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}

帮助扩容

// 如果正在调整大小 帮助进行扩容
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    Node<K,V>[] nextTab; int sc;
    // 如果数组不为空、并且是ForwardingNode而且它的下一个table不为空 说明当前桶已经迁移完毕
    // 当前桶迁移完毕 去帮助其他桶迁移后 返回新数组
    // 当前桶没迁移完毕 返回原数组
    if (tab != null && (f instanceof ForwardingNode) &&
        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
        int rs = resizeStamp(tab.length);
        while (nextTab == nextTable && table == tab &&
               (sc = sizeCtl) < 0) {
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}
posted @ 2019-11-11 10:05  慢慢行  阅读(25)  评论(0)    收藏  举报