Java并发专题:Lock

  Lock有三个实现类,一个是ReentrantLock,另两个是ReentrantReadWriteLock类中的两个静态内部类ReadLock和WriteLock。  

其实现都依赖java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以ReentrantLock作为讲解切入点。

使用方法:多线程下访问(互斥)共享资源时, 访问前加锁,访问结束以后解锁,解锁的操作推荐放入finally块中。

Lock l = ...; //根据不同的实现Lock接口类的构造函数得到一个锁对象 
l.lock(); //获取锁位于try块的外面 
try { 
      // access the resource protected by this lock 
} finally { 
     l.unlock(); 
}

 注意:加锁位于对资源访问的try块的外部,特别是使用lockInterruptibly方法加锁时就必须要这样做,这为了防止线程在获取锁时被中断,这时就不必(也不能)释放锁。

try {
     l.lockInterruptibly();//获取锁失败时不会执行finally块中的unlock语句
      try{
          // access the resource protected by this lock
     }finally{
          l.unlock();
     }
} catch (InterruptedException e) {
     // TODO Auto-generated catch block
     e.printStackTrace();
}

一、实现Lock接口的基本思想

          需要实现锁的功能,两个必备元素:

  • 一个是表示(锁)状态的变量(我们假设0表示没有线程获取锁,1表示已有线程占有锁),该变量必须声明为voaltile类型;
  • 另一个是队列,队列中的节点表示因未能获取锁而阻塞的线程。

  为了解决多核处理器下多线程缓存不一致的问题,表示状态的变量必须声明为voaltile类型,并且对表示状态的变量和队列的某些操作要保证原子性和可见性。原子性和可见性的操作主要通过Atomic包中的方法实现。

      线程获取锁的大致过程(这里没有考虑可重入和获取锁过程被中断或超时的情况)

          1. 读取表示锁状态的变量

         2. 如果表示状态的变量的值为0,那么当前线程尝试将变量值设置为1(通过CAS操作完成),当多个线程同时将表示状态的变量值由0设置成1时,仅一个线程能成功,其它线程都会失败:

            2.1 若成功,表示获取了锁,

                  2.1.1 如果该线程(或者说节点)已位于在队列中,则将其出列(并将下一个节点则变成了队列的头节点)

                  2.1.2 如果该线程未入列,则不用对队列进行维护

                  然后当前线程从lock方法中返回,对共享资源进行访问。            

             2.2 若失败,则当前线程将自身放入等待(锁的)队列中并阻塞自身,此时线程一直被阻塞在lock方法中,没有从该方法中返回(被唤醒后仍然在lock方法中,并从下一条语句继续执行,这里又会回到第1步重新开始)

        3. 如果表示状态的变量的值为1,那么将当前线程放入等待队列中,然后将自身阻塞(被唤醒后仍然在lock方法中,并从下一条语句继续执行,这里又会回到第1步重新开始)

          注意: 唤醒并不表示线程能立刻运行,而是表示线程处于就绪状态,仅仅是可以运行而已

      线程释放锁的大致过程

        1. 释放锁的线程将状态变量的值从1设置为0,并唤醒等待(锁)队列中的队首节点,释放锁的线程从就从unlock方法中返回,继续执行线程后面的代码

        2. 被唤醒的线程(队列中的队首节点)和可能和未进入队列并且准备获取的线程竞争获取锁,重复获取锁的过程

        注意:可能有多个线程同时竞争去获取锁,但是一次只能有一个线程去释放锁,队列中的节点都需要它的前一个节点将其唤醒,例如有队列A<-B-<C ,即由A释放锁时唤醒B,B释放锁时唤醒C

 

二、公平锁和非公平锁

         锁可以分为公平锁和不公平锁,重入锁和非重入锁(关于重入锁的介绍会在ReentrantLock源代码分析中介绍),以上过程实际上是非公平锁的获取和释放过程。

公平锁严格按照先来后到的顺去获取锁,而非公平锁允许插队获取锁。

          公平锁获取锁的过程上有些不同,在使用公平锁时,某线程想要获取锁,不仅需要判断当前表示状态的变量的值是否为0,还要判断队列里是否还有其他线程,若队列中还有线程则说明当前线程需要排队,进行入列操作,并将自身阻塞;若队列为空,才能尝试去获取锁。而对于非公平锁,当表示状态的变量的值是为0,就可以尝试获取锁,不必理会队列是否为空,这样就实现了插队获取锁的特点。通常来说非公平锁的吞吐率比公平锁要高,我们一般常用非公平锁。

           这里需要解释一点,什么情况下才会出现,表示锁的状态的变量的值是为0而且队列中仍有其它线程等待获取锁的情况。

           假设有三个线程A、B、C。A线程为正在运行的线程并持有锁,队列中有一个C线程,位于队首。现在A线程要释放锁,具体执行的过程操作可分为两步:

            1. 将表示锁状态的变量值由1变为0,

            2. C线程被唤醒,这里要明确两点:

              (1)C线程被唤醒并不代表C线程开始执行,C线程此时是处于就绪状态,要等待操作系统的调度

              (2)C线程目前还并未出列,C线程要进入运行状态,并且通过竞争获取到锁以后才会出列。

            如果C线程此时还没有进入运行态,同时未在队列中的B线程进行获取锁的操作,B就会发现虽然当前没有线程持有锁,但是队列不为空(C线程仍然位于队列中),要满足先来后到的特点(B在C之后执行获取锁的操作),B线程就不能去尝试获取锁,而是进行入列操作。

 

三、实现Condition接口的基本思想

         Condition 本质是一个接口,它包含如下方法

// 让线程进入等通知待状态 
void await() throws InterruptedException; 
void awaitUninterruptibly();
 
//让线程进入等待通知状态,超时结束等待状态,并抛出异常  
long awaitNanos(long nanosTimeout) throws InterruptedException; 
boolean await(long time, TimeUnit unit) throws InterruptedException; 
boolean awaitUntil(Date deadline) throws InterruptedException; 

//将条件队列中的一个线程,从等待通知状态转换为等待锁状态 
void signal(); 

//将条件队列中的所有线程,从等待通知阻塞状态转换为等待锁阻塞状态
void signalAll();

           一个Condition实例的内部实际上维护了一个队列,队列中的节点表示由于(某些条件不满足而)线程自身调用await方法阻塞的线程。Condition接口中有两个重要的方法,即 await方法和 signal方法。线程调用这个方法之前该线程必须已经获取了Condition实例所依附的锁。这样的原因有两个,(1)对于await方法,它内部会执行释放锁的操作,所以使用前必须获取锁。(2)对于signal方法,是为了避免多个线程同时调用同一个Condition实例的singal方法时引起的(队列)出列竞争。下面是这两个方法的执行流程。

          await方法:

                            1. 入列到条件队列(注意这里不是等待锁的队列

                            2. 释放锁

                            3. 阻塞自身线程

                             ------------被唤醒后执行-------------

                            4. 尝试去获取锁(执行到这里时线程已不在条件队列中,而是位于等待(锁的)队列中,参见signal方法)

                                4.1 成功,从await方法中返回,执行线程后面的代码

                                4.2 失败,阻塞自己(等待前一个节点释放锁时将它唤醒)

         注意:await方法时自身线程调用的,线程在await方法中阻塞,并没有从await方法中返回,当唤醒后继续执行await方法中后面的代码(也就是获取锁的代码)。可以看出await方法释放了锁,又尝试获得锁。当获取锁不成功的时候当前线程仍然会阻塞到await方法中,等待前一个节点释放锁后再将其唤醒。

 

         signal方法:

                           1. 将条件队列的队首节点取出,放入等待锁队列的队尾

                           2. 唤醒该节点对应的线程

         注意:signal是由其它线程调用

condition

Lock和Condition的使用例程

           下面这个例子,就是利用lock和condition实现B线程先打印一句信息后,然后A线程打印两句信息(不能中断),交替十次后结束

public class ConditionDemo {
    volatile int key = 0;
    Lock l = new ReentrantLock();
    Condition c = l.newCondition();
    
    public static  void main(String[] args){
        ConditionDemo demo = new ConditionDemo();
        new Thread(demo.new A()).start();
        new Thread(demo.new B()).start();
    }
    
    class A implements Runnable{
        @Override
        public void run() {
            int i = 10;
            while(i > 0){
                l.lock();
                try{
                    if(key == 1){
                        System.out.println("A is Running");
                        System.out.println("A is Running");
                        i--;
                        key = 0;
                        c.signal();
                    }else{
                     c.awaitUninterruptibly();                        
                    }
                    
                }
                finally{
                    l.unlock();
                }
            }
        }
        
    }
    
    class B implements Runnable{
        @Override
        public void run() {
            int i = 10;
            while(i > 0){
                l.lock();
                try{
                    if(key == 0){
                        System.out.println("B is Running");
                        i--;
                        key = 1;
                        c.signal();
                    }else{
                     c.awaitUninterruptibly();                        
                    }
                    
                }
                finally{
                    l.unlock();
                }
            }
        }    
    }
}

 

一、ReentrantLock的调用过程

  经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:

  static abstract class Sync extends AbstractQueuedSynchronizer  

  Sync又有两个子类:

  final static class NonfairSync extends Sync  

  final static class FairSync extends Sync  

显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。 
先理一下Reentrant.lock()方法的调用过程(默认非公平锁): 
这里写图片描述

  这些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理后面的流程。

二、锁实现(加锁)

  简单说来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。 
该队列如图:

这里写图片描述

  与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。 
  当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。 
  如果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节难以完全领会其精髓,下面详细说明实现过程:

2.1 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

final boolean nonfairTryAcquire(int acquires) {  
    final Thread current = Thread.currentThread();  
    int c = getState();  
    if (c == 0) {  
        if (compareAndSetState(0, acquires)) {  
            setExclusiveOwnerThread(current);  
            return true;  
        }  
    }  
    else if (current == getExclusiveOwnerThread()) {  
        int nextc = c + acquires;  
        if (nextc < 0) // overflow  
            throw new Error("Maximum lock count exceeded");  
        setState(nextc);  
        return true;  
    }  
    return false;  
}  

该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。 
如果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会-1,但为0时释放锁。如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很显然这个Running线程并未进入等待队列。 
如果c !=0 但发现自己已经拥有锁,只是简单地++acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。

2.2 AbstractQueuedSynchronizer.addWaiter

addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:

private Node addWaiter(Node mode) {  
    Node node = new Node(Thread.currentThread(), mode);  
    // Try the fast path of enq; backup to full enq on failure  
    Node pred = tail;  
    if (pred != null) {  
        node.prev = pred;  
        if (compareAndSetTail(pred, node)) {  
            pred.next = node;  
            return node;  
        }  
    }  
    enq(node);  
    return node;  
}  

其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步: 
如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail 
如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail 
下面是enq方法:

private Node enq(final Node node) {  
    for (;;) {  
        Node t = tail;  
        if (t == null) { // Must initialize  
            Node h = new Node(); // Dummy header  
            h.next = node;  
            node.prev = h;  
            if (compareAndSetHead(h)) {  
                tail = node;  
                return h;  
            }  
        }  
        else {  
            node.prev = t;  
            if (compareAndSetTail(t, node)) {  
                t.next = node;  
                return t;  
            }  
        }  
    }  
}  

该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前线程追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:

  • SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要重新这个后继线程(unpark)
  • CANCELLED(1):因为超时或中断,该线程已经被取消
  • CONDITION(-2):表明该线程被处于条件队列,就是因为调用了Condition.await而被阻塞
  • PROPAGATE(-3):传播共享锁
  • 0:0代表无状态

2.3 AbstractQueuedSynchronizer.acquireQueued

acquireQueued的主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回

final boolean acquireQueued(final Node node, int arg) {  
    try {  
        boolean interrupted = false;  
        for (;;) {  
            final Node p = node.predecessor();  
            if (p == head && tryAcquire(arg)) {  
                setHead(node);  
                p.next = null; // help GC  
                return interrupted;  
            }  
            if (shouldParkAfterFailedAcquire(p, node) &&  
                parkAndCheckInterrupt())  
                interrupted = true;  
        }  
    } catch (RuntimeException ex) {  
        cancelAcquire(node);  
        throw ex;  
    }  
}  

仔细看看这个方法是个无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,当然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把当前线程挂起,从而阻塞住线程的调用栈。

private final boolean parkAndCheckInterrupt() {  
    LockSupport.park(this);  
    return Thread.interrupted();  
}  

如前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。当然也不是马上把请求不到锁的线程进行阻塞,还要检查该线程的状态,比如如果该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:

  private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {  
      int ws = pred.waitStatus;  
      if (ws == Node.SIGNAL)  
          /* 
           * This node has already set status asking a release 
           * to signal it, so it can safely park 
           */  
          return true;  
      if (ws > 0) {  
          /* 
           * Predecessor was cancelled. Skip over predecessors and 
           * indicate retry. 
           */  
   do {  
            node.prev = pred = pred.prev;  
    } while (pred.waitStatus > 0);  
            pred.next = node;  
    } else {  
          /* 
           * waitStatus must be 0 or PROPAGATE. Indicate that we 
           * need a signal, but don't park yet. Caller will need to 
           * retry to make sure it cannot acquire before parking.  
           */  
          compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  
      }   
      return false;  
  }  

检查原则在于:

  • 规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞

  • 规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞

  • 规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同

总体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,如果前继节点处于CANCELLED状态,则顺便删除这些节点重新构造队列。 
至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。

三、解锁

  请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行以后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程得到解锁,则执行第13行,即设置interrupted = true,之后又进入无限循环。

  从无限循环的代码可以看出,并不是得到解锁的线程一定能获得锁,必须在第6行中调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。通过之后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head,因此p == head的判断基本都会成功。

至此可以看到,把tryAcquire方法延迟到子类中实现的做法非常精妙并具有极强的可扩展性,令人叹为观止!当然精妙的不是这个Template设计模式,而是Doug Lea对锁结构的精心布局。

解锁代码相对简单,主要体现在AbstractQueuedSynchronizer.release和Sync.tryRelease方法中: 
class AbstractQueuedSynchronizer

public final boolean release(int arg) {  
    if (tryRelease(arg)) {  
        Node h = head;  
        if (h != null && h.waitStatus != 0)  
            unparkSuccessor(h);  
        return true;  
    }  
    return false;  
}  

class Sync

protected final boolean tryRelease(int releases) {  
    int c = getState() - releases;  
    if (Thread.currentThread() != getExclusiveOwnerThread())  
        throw new IllegalMonitorStateException();  
    boolean free = false;  
    if (c == 0) {  
        free = true;  
        setExclusiveOwnerThread(null);  
    }  
    setState(c);  
    return free;  
}  

tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。

tryRelease语义很明确:如果线程多次锁定,则进行多次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,因为无竞争所以没有使用CAS。 
release的语义在于:如果可以释放锁,则唤醒队列第一个线程(Head),具体唤醒代码如下:

private void unparkSuccessor(Node node) {  
    /* 
     * If status is negative (i.e., possibly needing signal) try 
     * to clear in anticipation of signalling. It is OK if this 
     * fails or if status is changed by waiting thread. 
     */  
    int ws = node.waitStatus;  
    if (ws < 0)  
        compareAndSetWaitStatus(node, ws, 0);   

    /* 
     * Thread to unpark is held in successor, which is normally 
     * just the next node.  But if cancelled or apparently null, 
     * traverse backwards from tail to find the actual 
     * non-cancelled successor. 
     */  
    Node s = node.next;  
    if (s == null || s.waitStatus > 0) {  
        s = null;  
        for (Node t = tail; t != null && t != node; t = t.prev)  
            if (t.waitStatus <= 0)  
                s = t;  
    }  
    if (s != null)  
        LockSupport.unpark(s.thread);  
}  

 

这段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会导致性能降低,其实这个发生的几率很小,所以不会有性能影响。之后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock完成。之后,被解锁的线程进入上面所说的重新竞争状态。

四、Lock VS Synchronized

AbstractQueuedSynchronizer通过构造一个基于阻塞的CLH队列容纳所有的阻塞线程,而对该队列的操作均通过Lock-Free(CAS)操作,但对已经获得锁的线程而言,ReentrantLock实现了偏向锁的功能。

synchronized的底层也是一个基于CAS操作的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了降低线程的出列速度;当然也实现了偏向锁,从数据结构来说二者设计没有本质区别。但synchronized还实现了自旋锁,并针对不同的系统和硬件体系进行了优化,而Lock则完全依靠系统阻塞挂起等待线程。

当然Lock比synchronized更适合在应用层扩展,可以继承AbstractQueuedSynchronizer定义各种实现,比如实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对应的Condition也比wait/notify要方便的多、灵活的多。

 

ReentrantReadWriteLock

可重入读写锁。读写锁维护了一个读锁,一个写锁。

读锁同一时刻允许多个读线程访问。

写锁同一时刻只允许一个写线程,其他读/写线程都需要阻塞。

Lock和synchronized的简单对比

类别

synchronized

Lock

存在层次

Java的关键字,在jvm层面上

是一个接口

锁的释放

1、以获取锁的线程执行完同步代码,释放锁;

2、线程执行发生异常,jvm会让线程释放锁。

必须在finally中释放锁,不然容易造成线程死锁

锁的获取

假设A线程获得锁,B线程等待。如果A线程阻塞,B线程会一直等待。

Lock有多种获取锁的方式,如lock、tryLock

锁状态

无法判断,只能阻塞

可以判断;

tryLock();

tryLock(long time, TimeUnit unit);

可避免死锁。

锁类型

可重入,非公平,不可中断

可重入,可公平(两者皆可)

可中断:lockInterruptibly();

功能

功能单一

API丰富;

tryLock();

tryLock(long time, TimeUnit unit);

可避免死锁。

 

posted @ 2020-09-17 14:01  qxwang  阅读(46)  评论(0)    收藏  举报