MySQL专题:索引与优化

前言

Innodb的表存储结构由段、簇(区)、页组成,一个段由若干簇组成,一个簇默认有64页,每页16KB。

一、索引

本文使用的案例的表

CREATE TABLE `award` (
   `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '用户id',
   `aty_id` varchar(100) NOT NULL DEFAULT '' COMMENT '活动场景id',
   `nickname` varchar(12) NOT NULL DEFAULT '' COMMENT '用户昵称',
   `is_awarded` tinyint(1) NOT NULL DEFAULT 0 COMMENT '用户是否领奖',
   `award_time` int(11) NOT NULL DEFAULT 0 COMMENT '领奖时间',
   `account` varchar(12) NOT NULL DEFAULT '' COMMENT '帐号',
   `password` char(32) NOT NULL DEFAULT '' COMMENT '密码',
   `message` varchar(255) NOT NULL DEFAULT '' COMMENT '获奖信息',
   `created_time` int(11) NOT NULL DEFAULT 0 COMMENT '创建时间',
   `updated_time` int(11) NOT NULL DEFAULT 0 COMMENT '更新时间',
   PRIMARY KEY (`id`)
 ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='获奖信息表';

创建

//其sql格式是 CREATE INDEX IndexName ON `TableName`(`字段名`(length)) 或者 ALTER TABLE TableName ADD INDEX IndexName(`字段名`(length))

第一种方式:CREATE INDEX account_Index ON `award`(`account`);

第二种方式:ALTER TABLE award ADD INDEX account_Index(`account`);

删除

//格式 :DORP INDEX IndexName ON `TableName`

1-1 索引类型

mysql索引类型:FULLTEXT、NORMAL、SPATIAL、UNIQUE

  • Normal 普通索引:表示普通索引,大多数情况下都可以使用
  • Unique 唯一索引:

    表示唯一的,不允许重复的索引,如果该字段信息保证不会重复例如身份证号用作索引时,可设置为unique

    约束唯一标识数据库表中的每一条记录,即在单表中不能用每条记录是唯一的(例如身份证就是唯一的),Unique(要求列唯一)和Primary Key(primary key = unique + not null 列唯一)约束均为列或列集合中提供了唯一性的保证,Primary Key是拥有自动定义的Unique约束,但是每个表中可以有多个Unique约束,但是只能有一个Primary Key约束。
    mysql中创建Unique约束

  • Full Text 全文索引:

    表示全文收索,在检索长文本的时候,效果最好,短文本建议使用Index,但是在检索的时候数据量比较大的时候,现将数据放入一个没有全局索引的表中,然后在用Create Index创建的Full Text索引,要比先为一张表建立Full Text然后在写入数据要快的很多

    FULLTEXT 用于搜索很长一篇文章的时候,效果最好。用在比较短的文本,如果就一两行字的,普通的 INDEX 也可以。

  • SPATIAL 空间索引

    空间索引是对空间数据类型的字段建立的索引,MYSQL中的空间数据类型有4种,分别是GEOMETRY、POINT、LINESTRING、POLYGON。MYSQL使用SPATIAL关键字进行扩展,使得能够用于创建正规索引类型的语法创建空间索引。创建空间索引的列,必须将其声明为NOT NULL,空间索引只能在存储引擎为MYISAM的表中创建

1-2 btree索引和hash索引

  • BTREE(B+树(可以是多叉树)) {主流使用}
  • HASH(key,value) 这种方式对范围查询支持得不是很好

Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些。

(1)Hash 索引仅仅能满足”=”,”IN”和”<=>”查询,不能使用范围查询。

由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。

(2)Hash 索引无法被用来避免数据的排序操作。

由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;

(3)Hash 索引不能利用部分索引键查询。

对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。

(4)Hash 索引在任何时候都不能避免表扫描。

前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。

(5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。

对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。

1-3 单列索引 

1) 唯一索引

与普通索引类似,但是不同的是唯一索引要求所有的类的值是唯一的,这一点和主键索引一样.但是他允许有空值,

其sql格式是 CREATE UNIQUE INDEX IndexName ON `TableName`(`字段名`(length)); 或者 ALTER TABLE TableName ADD UNIQUE (column_list)  

CREATE UNIQUE INDEX account_UNIQUE_Index ON `award`(`account`);

2) 主键索引

不允许有空值,(在B+TREE中的InnoDB引擎中,主键索引起到了至关重要的地位)

主键索引建立的规则是 int优于varchar,一般在建表的时候创建,最好是与表的其他字段不相关的列或者是业务不相关的列.一般会设为 int 而且是 AUTO_INCREMENT自增类型的

1-4 组合索引

一个表中含有多个单列索引不代表是组合索引,通俗一点讲 组合索引是:包含多个字段但是只有索引名称

其sql格式是 CREATE INDEX IndexName On `TableName`(`字段名`(length),`字段名`(length),...);

 CREATE INDEX nickname_account_createdTime_Index ON `award`(`nickname`, `account`, `created_time`);

如果你建立了 组合索引(nickname_account_createdTime_Index) 那么他实际包含的是3个索引 (nickname) (nickname,account)(nickname,account,created_time)

在使用查询的时候遵循mysql组合索引的"最左前缀",下面我们来分析一下 什么是最左前缀:及索引where时的条件要按照建立索引的时候字段的排序方式

1、不按索引最左列开始查询(多列索引) 例如index(‘c1’, ‘c2’, ‘c3’) where ‘c2’ = ‘aaa’ 不使用索引,where `c2` = `aaa` and `c3`=`sss` 不能使用索引

2、查询中某个列有范围查询,则其右边的所有列都无法使用查询(多列查询)

Where c1= ‘xxx’ and c2 like = ‘aa%’ and c3=’sss’ 改查询只会使用索引中的前两列,因为like是范围查询

3、不能跳过某个字段来进行查询,这样利用不到索引,比如我的sql 是 

explain select * from `award` where nickname > 'rSUQFzpkDz3R' and account = 'DYxJoqZq2rd7' and created_time = 1449567822; 那么这时候他使用不到其组合索引.

因为我的索引是 (nickname, account, created_time),如果第一个字段出现 范围符号的查找,那么将不会用到索引,如果我是第二个或者第三个字段使用范围符号的查找,那么他会利用索引,利用的索引是(nickname),

因为上面说了建立组合索引(nickname, account, created_time), 会出现三个索引

 

1-4 全文索引

文本字段上(text)如果建立的是普通索引,那么只有对文本的字段内容前面的字符进行索引,其字符大小根据索引建立索引时申明的大小来规定.

如果文本中出现多个一样的字符,而且需要查找的话,那么其条件只能是 where column lick '%xxxx%' 这样做会让索引失效

.这个时候全文索引就祈祷了作用了

ALTER TABLE tablename ADD FULLTEXT(column1, column2)

有了全文索引,就可以用SELECT查询命令去检索那些包含着一个或多个给定单词的数据记录了。

ELECT * FROM tablename
WHERE MATCH(column1, column2) AGAINST(‘xxx′, ‘sss′, ‘ddd′)

这条命令将把column1和column2字段里有xxx、sss和ddd的数据记录全部查询出来。

优点

1.可以通过建立唯一索引或者主键索引,保证数据库表中每一行数据的唯一性.
2.建立索引可以大大提高检索的数据,以及减少表的检索行数
3.在表连接的连接条件 可以加速表与表直接的相连 
4.在分组和排序字句进行数据检索,可以减少查询时间中 分组 和 排序时所消耗的时间(数据库的记录会重新排序)
5.建立索引,在查询中使用索引 可以提高性能

缺点

1.在创建索引和维护索引 会耗费时间,随着数据量的增加而增加
2.索引文件会占用物理空间,除了数据表需要占用物理空间之外,每一个索引还会占用一定的物理空间
3.当对表的数据进行 INSERT,UPDATE,DELETE 的时候,索引也要动态的维护,这样就会降低数据的维护速度,(建立索引会占用磁盘空间的索引文件。一般情况这个问题不太严重,但如果你在一个大表上创建了多种组合索引,索引文件的会膨胀很快)。

1-5 在实际操作过程中,应该选取表中哪些字段作为索引?

为了使索引的使用效率更高,在创建索引时,必须考虑在哪些字段上创建索引和创建什么类型的索引,有7大原则:

  • 1.选择唯一性索引
  • 2.为经常需要排序、分组、distinct 和联合操作的字段建立索引  (单独order by 用不了索引,索引考虑加where 或加limit)
  • 3.为常作为查询条件的字段建立索引
  • 4.限制索引的数目
  • 5.尽量使用数据量少的索引
  • 6.尽量使用前缀来索引
  • 7.删除不再使用或者很少使用的索引
  • 8. 经常更新修改的字段不要建立索引(针对mysql说,因为字段更改同时索引就要重新建立,排序,而Orcale好像是有这样的机制字段值更改了,它不立刻建立索引,排序索引,而是根据更改个数,时间段去做平衡索引这件事的)
  • 9、不推荐在同一列建多个索引
  • 5.在一些where 之后的 < <= > >= BETWEEN IN 以及某个情况下的like 建立字段的索引(B-TREE)
  • 6.like语句的 如果你对nickname字段建立了一个索引.当查询的时候的语句是 nickname lick '%ABC%' 那么这个索引讲不会起到作用.而nickname lick 'ABC%' 那么将可以用到索引
  • 7.索引不会包含NULL列,如果列中包含NULL值都将不会被包含在索引中,复合索引中如果有一列含有NULL值那么这个组合索引都将失效,一般需要给默认值0或者 ' '字符串
  • 8.使用短索引,如果你的一个字段是Char(32)或者int(32),在创建索引的时候指定前缀长度 比如前10个字符 (前提是多数值是唯一的..)那么短索引可以提高查询速度,并且可以减少磁盘的空间,也可以减少I/0操作.
  • 9.不要在列上进行运算,这样会使得mysql索引失效,也会进行全表扫描
  • 10.选择越小的数据类型越好,因为通常越小的数据类型通常在磁盘,内存,cpu,缓存中 占用的空间很少,处理起来更快

1-5 什么情况下不创建索引

1.查询中很少使用到的列 不应该创建索引,如果建立了索引然而还会降低mysql的性能和增大了空间需求.
2.很少数据的列也不应该建立索引,比如 一个性别字段 0或者1,在查询中,结果集的数据占了表中数据行的比例比较大,mysql需要扫描的行数很多,增加索引,并不能提高效率
3.定义为text和image和bit数据类型的列不应该增加索引,
4.当表的修改(UPDATE,INSERT,DELETE)操作远远大于检索(SELECT)操作时不应该创建索引,这两个操作是互斥的关系

 

 

二、优化

1、选择索引的数据类型

MySQL支持很多数据类型,选择合适的数据类型存储数据对性能有很大的影响。通常来说,可以遵循以下一些指导原则:

(1)越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。
(2)简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。
(3)尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值。

1.1、选择标识符
选择合适的标识符是非常重要的。选择时不仅应该考虑存储类型,而且应该考虑MySQL是怎样进行运算和比较的。一旦选定数据类型,应该保证所有相关的表都使用相同的数据类型。
(1)    整型:通常是作为标识符的最好选择,因为可以更快的处理,而且可以设置为AUTO_INCREMENT。

(2)    字符串:尽量避免使用字符串作为标识符,它们消耗更好的空间,处理起来也较慢。而且,通常来说,字符串都是随机的,所以它们在索引中的位置也是随机的,这会导致页面分裂、随机访问磁盘,聚簇索引分裂(对于使用聚簇索引的存储引擎)。

2、索引入门
对于任何DBMS,索引都是进行优化的最主要的因素。对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降。
如果对多列进行索引(组合索引),列的顺序非常重要,MySQL仅能对索引最左边的前缀进行有效的查找。例如:
假设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引。查询语句select * from t1 where c1=1也能够使用该索引。但是,查询语句select * from t1 where c2=2不能够使用该索引,因为没有组合索引的引导列,即,要想使用c2列进行查找,必需出现c1等于某值。

2.1、索引的类型
索引是在存储引擎中实现的,而不是在服务器层中实现的。所以,每种存储引擎的索引都不一定完全相同,并不是所有的存储引擎都支持所有的索引类型。
2.1.1、B-Tree索引
假设有如下一个表:

CREATE TABLE People (

   last_name varchar(50)    not null,

   first_name varchar(50)    not null,

   dob        date           not null,

   gender     enum('m', 'f') not null,

   key(last_name, first_name, dob)

);

 其索引包含表中每一行的last_name、first_name和dob列。其结构大致如下:

 

 索引存储的值按索引列中的顺序排列。可以利用B-Tree索引进行全关键字、关键字范围和关键字前缀查询,当然,如果想使用索引,你必须保证按索引的最左边前缀(leftmost prefix of the index)来进行查询。
(1)匹配全值(Match the full value):对索引中的所有列都指定具体的值。例如,上图中索引可以帮助你查找出生于1960-01-01的Cuba Allen。
(2)匹配最左前缀(Match a leftmost prefix):你可以利用索引查找last name为Allen的人,仅仅使用索引中的第1列。
(3)匹配列前缀(Match a column prefix):例如,你可以利用索引查找last name以J开始的人,这仅仅使用索引中的第1列。
(4)匹配值的范围查询(Match a range of values):可以利用索引查找last name在Allen和Barrymore之间的人,仅仅使用索引中第1列。
(5)匹配部分精确而其它部分进行范围匹配(Match one part exactly and match a range on another part):可以利用索引查找last name为Allen,而first name以字母K开始的人。
(6)仅对索引进行查询(Index-only queries):如果查询的列都位于索引中,则不需要读取元组的值。
由于B-树中的节点都是顺序存储的,所以可以利用索引进行查找(找某些值),也可以对查询结果进行ORDER BY。当然,使用B-tree索引有以下一些限制:
(1) 查询必须从索引的最左边的列开始。关于这点已经提了很多遍了。例如你不能利用索引查找在某一天出生的人。
(2) 不能跳过某一索引列。例如,你不能利用索引查找last name为Smith且出生于某一天的人。
(3) 存储引擎不能使用索引中范围条件右边的列。例如,如果你的查询语句为WHERE last_name="Smith" AND first_name LIKE 'J%' AND dob='1976-12-23',则该查询只会使用索引中的前两列,因为LIKE是范围查询。

2.1.2、Hash索引
MySQL中,只有Memory存储引擎显示支持hash索引,是Memory表的默认索引类型,尽管Memory表也可以使用B-Tree索引。Memory存储引擎支持非唯一hash索引,这在数据库领域是罕见的,如果多个值有相同的hash code,索引把它们的行指针用链表保存到同一个hash表项中。
假设创建如下一个表:
CREATE TABLE testhash (
   fname VARCHAR(50) NOT NULL,
   lname VARCHAR(50) NOT NULL,
   KEY USING HASH(fname)
) ENGINE=MEMORY;
包含的数据如下:

假设索引使用hash函数f( ),如下:

f('Arjen') = 2323

f('Baron') = 7437

f('Peter') = 8784

f('Vadim') = 2458

此时,索引的结构大概如下:

 

 Slots是有序的,但是记录不是有序的。当你执行
mysql> SELECT lname FROM testhash WHERE fname='Peter';
MySQL会计算’Peter’的hash值,然后通过它来查询索引的行指针。因为f('Peter') = 8784,MySQL会在索引中查找8784,得到指向记录3的指针。
因为索引自己仅仅存储很短的值,所以,索引非常紧凑。Hash值不取决于列的数据类型,一个TINYINT列的索引与一个长字符串列的索引一样大。
 
Hash索引有以下一些限制:
(1)由于索引仅包含hash code和记录指针,所以,MySQL不能通过使用索引避免读取记录。但是访问内存中的记录是非常迅速的,不会对性造成太大的影响。
(2)不能使用hash索引排序。
(3)Hash索引不支持键的部分匹配,因为是通过整个索引值来计算hash值的。
(4)Hash索引只支持等值比较,例如使用=,IN( )和<=>。对于WHERE price>100并不能加速查询。
2.1.3、空间(R-Tree)索引
MyISAM支持空间索引,主要用于地理空间数据类型,例如GEOMETRY。
2.1.4、全文(Full-text)索引
全文索引是MyISAM的一个特殊索引类型,主要用于全文检索。

3、高性能的索引策略
3.1、聚簇索引(Clustered Indexes)
聚簇索引保证关键字的值相近的元组存储的物理位置也相同(所以字符串类型不宜建立聚簇索引,特别是随机字符串,会使得系统进行大量的移动操作),且一个表只能有一个聚簇索引。因为由存储引擎实现索引,所以,并不是所有的引擎都支持聚簇索引。目前,只有solidDB和InnoDB支持。
聚簇索引的结构大致如下:

 

 注:叶子页面包含完整的元组,而内节点页面仅包含索引的列(索引的列为整型)。一些DBMS允许用户指定聚簇索引,但是MySQL的存储引擎到目前为止都不支持。InnoDB对主键建立聚簇索引。如果你不指定主键,InnoDB会用一个具有唯一且非空值的索引来代替。如果不存在这样的索引,InnoDB会定义一个隐藏的主键,然后对其建立聚簇索引。一般来说,DBMS都会以聚簇索引的形式来存储实际的数据,它是其它二级索引的基础。

3.1.1、InnoDB和MyISAM的数据布局的比较
为了更加理解聚簇索引和非聚簇索引,或者primary索引和second索引(MyISAM不支持聚簇索引),来比较一下InnoDB和MyISAM的数据布局,对于如下表:

 

CREATE TABLE layout_test (

   col1 int NOT NULL,

   col2 int NOT NULL,

   PRIMARY KEY(col1),

   KEY(col2)

);

 假设主键的值位于1---10,000之间,且按随机顺序插入,然后用OPTIMIZE TABLE进行优化。col2随机赋予1---100之间的值,所以会存在许多重复的值。
(1)    MyISAM的数据布局
其布局十分简单,MyISAM按照插入的顺序在磁盘上存储数据,如下:

 注:左边为行号(row number),从0开始。因为元组的大小固定,所以MyISAM可以很容易的从表的开始位置找到某一字节的位置。
据些建立的primary key的索引结构大致如下:

 注:MyISAM不支持聚簇索引,索引中每一个叶子节点仅仅包含行号(row number),且叶子节点按照col1的顺序存储。
来看看col2的索引结构:

 实际上,在MyISAM中,primary key和其它索引没有什么区别。Primary key仅仅只是一个叫做PRIMARY的唯一,非空的索引而已。

(2)    InnoDB的数据布局
InnoDB按聚簇索引的形式存储数据,所以它的数据布局有着很大的不同。它存储表的结构大致如下:

 注:聚簇索引中的每个叶子节点包含primary key的值,事务ID和回滚指针(rollback pointer)——用于事务和MVCC,和余下的列(如col2)。

相对于MyISAM,二级索引与聚簇索引有很大的不同。InnoDB的二级索引的叶子包含primary key的值,而不是行指针(row pointers),这减小了移动数据或者数据页面分裂时维护二级索引的开销,因为InnoDB不需要更新索引的行指针。其结构大致如下:

 聚簇索引和非聚簇索引表的对比:

 

 

 3.1.2、按primary key的顺序插入行(InnoDB)

如果你用InnoDB,而且不需要特殊的聚簇索引,一个好的做法就是使用代理主键(surrogate key)——独立于你的应用中的数据。最简单的做法就是使用一个AUTO_INCREMENT的列,这会保证记录按照顺序插入,而且能提高使用primary key进行连接的查询的性能。应该尽量避免随机的聚簇主键,例如,字符串主键就是一个不好的选择,它使得插入操作变得随机。

 

 3.2、覆盖索引(Covering Indexes)
如果索引包含满足查询的所有数据,就称为覆盖索引。覆盖索引是一种非常强大的工具,能大大提高查询性能。只需要读取索引而不用读取数据有以下一些优点:
(1)索引项通常比记录要小,所以MySQL访问更少的数据;
(2)索引都按值的大小顺序存储,相对于随机访问记录,需要更少的I/O;
(3)大多数据引擎能更好的缓存索引。比如MyISAM只缓存索引。
(4)覆盖索引对于InnoDB表尤其有用,因为InnoDB使用聚集索引组织数据,如果二级索引中包含查询所需的数据,就不再需要在聚集索引中查找了。
覆盖索引不能是任何索引,只有B-TREE索引存储相应的值。而且不同的存储引擎实现覆盖索引的方式都不同,并不是所有存储引擎都支持覆盖索引(Memory和Falcon就不支持)。
对于索引覆盖查询(index-covered query),使用EXPLAIN时,可以在Extra一列中看到“Using index”。例如,在sakila的inventory表中,有一个组合索引(store_id,film_id),对于只需要访问这两列的查询,MySQL就可以使用索引,如下:

mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G

*************************** 1. row ***************************

           id: 1

 select_type: SIMPLE

        table: inventory

         type: index

possible_keys: NULL

          key: idx_store_id_film_id

      key_len: 3

          ref: NULL

         rows: 5007

        Extra: Using index

1 row in set (0.17 sec)

在大多数引擎中,只有当查询语句所访问的列是索引的一部分时,索引才会覆盖。但是,InnoDB不限于此,InnoDB的二级索引在叶子节点中存储了primary key的值。因此,sakila.actor表使用InnoDB,而且对于是last_name上有索引,所以,索引能覆盖那些访问actor_id的查询,如:

 

mysql> EXPLAIN SELECT actor_id, last_name

    -> FROM sakila.actor WHERE last_name = 'HOPPER'\G

*************************** 1. row ***************************

           id: 1

 select_type: SIMPLE

        table: actor

         type: ref

possible_keys: idx_actor_last_name

          key: idx_actor_last_name

      key_len: 137

          ref: const

         rows: 2

        Extra: Using where; Using index

 

3.3、利用索引进行排序
MySQL中,有两种方式生成有序结果集:一是使用filesort,二是按索引顺序扫描。利用索引进行排序操作是非常快的,而且可以利用同一索引同时进行查找和排序操作。当索引的顺序与ORDER BY中的列顺序相同且所有的列是同一方向(全部升序或者全部降序)时,可以使用索引来排序。如果查询是连接多个表,仅当ORDER BY中的所有列都是第一个表的列时才会使用索引。其它情况都会使用filesort。

create table actor(

actor_id int unsigned NOT NULL AUTO_INCREMENT,

name      varchar(16) NOT NULL DEFAULT '',

password        varchar(16) NOT NULL DEFAULT '',

PRIMARY KEY(actor_id),

 KEY     (name)

) ENGINE=InnoDB

insert into actor(name,password) values('cat01','1234567');

insert into actor(name,password) values('cat02','1234567');

insert into actor(name,password) values('ddddd','1234567');

insert into actor(name,password) values('aaaaa','1234567');

 

 

mysql> explain select actor_id from actor order by actor_id \G

*************************** 1. row ***************************

           id: 1

 select_type: SIMPLE

        table: actor

         type: index

possible_keys: NULL

          key: PRIMARY

      key_len: 4

          ref: NULL

         rows: 4

        Extra: Using index

1 row in set (0.00 sec)

 

mysql> explain select actor_id from actor order by password \G

*************************** 1. row ***************************

           id: 1

 select_type: SIMPLE

        table: actor

         type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 4

        Extra: Using filesort

1 row in set (0.00 sec)

 

mysql> explain select actor_id from actor order by name \G

*************************** 1. row ***************************

           id: 1

 select_type: SIMPLE

        table: actor

         type: index

possible_keys: NULL

          key: name

      key_len: 18

          ref: NULL

         rows: 4

        Extra: Using index

1 row in set (0.00 sec)

 当MySQL不能使用索引进行排序时,就会利用自己的排序算法(快速排序算法)在内存(sort buffer)中对数据进行排序,如果内存装载不下,它会将磁盘上的数据进行分块,再对各个数据块进行排序,然后将各个块合并成有序的结果集(实际上就是外排序)。对于filesort,MySQL有两种排序算法。
(1)两遍扫描算法(Two passes)
实现方式是先将须要排序的字段和可以直接定位到相关行数据的指针信息取出,然后在设定的内存(通过参数sort_buffer_size设定)中进行排序,完成排序之后再次通过行指针信息取出所需的Columns。
注:该算法是4.1之前采用的算法,它需要两次访问数据,尤其是第二次读取操作会导致大量的随机I/O操作。另一方面,内存开销较小。
(3)    一次扫描算法(single pass)
该算法一次性将所需的Columns全部取出,在内存中排序后直接将结果输出。
注:从 MySQL 4.1 版本开始使用该算法。它减少了I/O的次数,效率较高,但是内存开销也较大。如果我们将并不需要的Columns也取出来,就会极大地浪费排序过程所需要的内存。在 MySQL 4.1 之后的版本中,可以通过设置 max_length_for_sort_data 参数来控制 MySQL 选择第一种排序算法还是第二种。当取出的所有大字段总大小大于 max_length_for_sort_data 的设置时,MySQL 就会选择使用第一种排序算法,反之,则会选择第二种。为了尽可能地提高排序性能,我们自然更希望使用第二种排序算法,所以在 Query 中仅仅取出需要的 Columns 是非常有必要的。

当对连接操作进行排序时,如果ORDER BY仅仅引用第一个表的列,MySQL对该表进行filesort操作,然后进行连接处理,此时,EXPLAIN输出“Using filesort”;否则,MySQL必须将查询的结果集生成一个临时表,在连接完成之后进行filesort操作,此时,EXPLAIN输出“Using temporary;Using filesort”。

 

3.4、索引与加锁
索引对于InnoDB非常重要,因为它可以让查询锁更少的元组。这点十分重要,因为MySQL 5.0中,InnoDB直到事务提交时才会解锁。有两个方面的原因:首先,即使InnoDB行级锁的开销非常高效,内存开销也较小,但不管怎么样,还是存在开销。其次,对不需要的元组的加锁,会增加锁的开销,降低并发性。
InnoDB仅对需要访问的元组加锁,而索引能够减少InnoDB访问的元组数。但是,只有在存储引擎层过滤掉那些不需要的数据才能达到这种目的。一旦索引不允许InnoDB那样做(即达不到过滤的目的),MySQL服务器只能对InnoDB返回的数据进行WHERE操作,此时,已经无法避免对那些元组加锁了:InnoDB已经锁住那些元组,服务器无法解锁了。
来看个例子:

create table actor(

actor_id int unsigned NOT NULL AUTO_INCREMENT,

name      varchar(16) NOT NULL DEFAULT '',

password        varchar(16) NOT NULL DEFAULT '',

PRIMARY KEY(actor_id),

 KEY     (name)

) ENGINE=InnoDB

insert into actor(name,password) values('cat01','1234567');

insert into actor(name,password) values('cat02','1234567');

insert into actor(name,password) values('ddddd','1234567');

insert into actor(name,password) values('aaaaa','1234567');

SET AUTOCOMMIT=0;

BEGIN;

SELECT actor_id FROM actor WHERE actor_id < 4

AND actor_id <> 1 FOR UPDATE;

 该查询仅仅返回2---3的数据,实际已经对1---3的数据加上排它锁了。InnoDB锁住元组1是因为MySQL的查询计划仅使用索引进行范围查询(而没有进行过滤操作,WHERE中第二个条件已经无法使用索引了):

 

mysql> EXPLAIN SELECT actor_id FROM test.actor

    -> WHERE actor_id < 4 AND actor_id <> 1 FOR UPDATE \G

*************************** 1. row ***************************

           id: 1

 select_type: SIMPLE

        table: actor

         type: index

possible_keys: PRIMARY

          key: PRIMARY

      key_len: 4

          ref: NULL

         rows: 4

        Extra: Using where; Using index

1 row in set (0.00 sec)

 

mysql>

 表明存储引擎从索引的起始处开始,获取所有的行,直到actor_id<4为假,服务器无法告诉InnoDB去掉元组1。
为了证明row 1已经被锁住,我们另外建一个连接,执行如下操作:

SET AUTOCOMMIT=0;

BEGIN;

SELECT actor_id FROM actor WHERE actor_id = 1 FOR UPDATE;

 

 该查询会被挂起,直到第一个连接的事务提交释放锁时,才会执行(这种行为对于基于语句的复制(statement-based replication)是必要的)。
如上所示,当使用索引时,InnoDB会锁住它不需要的元组。更糟糕的是,如果查询不能使用索引,MySQL会进行全表扫描,并锁住每一个元组,不管是否真正需要。

posted @ 2019-08-04 13:36  qxwang  阅读(49)  评论(0)    收藏  举报