P8647 [蓝桥杯 2017 省 AB] 分巧克力

题目链接:

小巧克力的边长一定在 \(1 \sim 10^5\) 之间。

答案为在 \(1 \sim 10^5\) 之间找一个最大的数,使得所有 \(h[i]/a * w[i]/a\) 的和 \(\geqslant k\) 即可。

#include <cstdio>
#include <algorithm>

const int N = 1e5 + 10;

int n, k, h[N], w[N];

bool check(int a) {
    int ans = 0;
    for (int i = 0; i < n; i++) ans += (h[i] / a) * (w[i] / a);
    return ans >= k;
}

int main()
{
    scanf("%d%d", &n, &k);
    
    int m = -1e9;
    for (int i = 0; i < n; i++) {
        scanf("%d%d", &h[i], &w[i]);
        m = std::max(m, std::max(h[i], w[i]));
    }
    int l = 1, r = m;//这里r直接取1e5也行
    while (l < r) {
        int mid = (l + r + 1) >> 1;
        if (check(mid)) l = mid;//如果可以分出k块,就把小巧克力的边长扩大
        else r = mid - 1;
    }
    printf("%d", l);
    return 0;
}
posted @ 2024-03-01 09:33  胖柚の工作室  阅读(87)  评论(0)    收藏  举报