pytorch初学
- repeat
import torch x = torch.tensor([1, 2, 3]) print(x) print(x.repeat(4, 2)) print(x.repeat(4, 2, 1))

- permute: 将对应维度的张量置换,有点numpy.transpose()的意思,具体可体会下面的例子
import torch unpermuted=torch.tensor([[[1,2,3],[4,5,6]]]) print('unpermuted.size:',unpermuted.size()) print(unpermuted) permuted=unpermuted.permute(2,0,1) print('permuted.size:',permuted.size()) print(permuted)

- view: 和numpy.reshape()类似
import torch x1=torch.Tensor([[[1,2,3],[4,5,6]]]) x2=torch.Tensor([1,2,3,4,5,6]) print('x1.view: ',x1.view(1,6)) print('x1.view: ',x2.view(1,6)) x1=torch.Tensor([[[1,2,3],[4,5,6]]]) print('x1:\n',x1) print('view:\n',x1.view(3,2)) print('permute:\n',x1.permute(0,2,1))

若x1.vew(-1,2)表示reshape成一个2列的张量,多少行不确定。
- bmm:对存储在两个batch1和batch2内的矩阵进行批矩阵乘操作

浙公网安备 33010602011771号