生成函数求斐波那契数列的通项公式
前置知识
斐波那契数列的递推公式
\( F_n = \begin{cases} 0 & (n = 0) \\ 1 & (n = 1) \\ F_{n - 1} + F_{n - 2} & (n \ge 2) \end{cases} \)
等比数列求和公式
\( S_n = a_1 \cfrac{1 - q^n}{1 - q} \quad (q \ne 1) \)
当 \(\left| q \right| < 1\) 时 \({q^n}\)趋近于0,则有:\(S_n = a_1 \cfrac{1}{1 - q} \quad (\left| q \right| < 1)\),
那么首项为1时则有:\((1 + q + q^2 + ... + q^n) = \cfrac{1}{1 - q}\)
生成函数
\( (1, 1, 1, 1, ... 1) \text{的生成函数为} (1 + x^1 + x^2 + x^3 + ... + x^n) \)
推导
已知斐波那契数列为\((F_0, F_1, F_2, F_3, ..., F_n)\),则其生成函数为:
\((F_0 + F_1x + F_2x^2 + F_3x^3 + ... + F_nx^n)\),我们将其设为\(f(x)\),
则有\(f(x) = F_0 + F_1x + F_2x^2 + F_3x^3 + ... + F_nx^n\)。
将\(f(x)\) 左右两端分别乘以\(x\) 和 \(x^2\),则有
\(
\begin{aligned}
f(x) &= F_0 + F_1x + F_2x^2 + F_3x^3 + ... + F_nx^n \\
f(x)x &= \qquad \ F_0x + F_1x^2 + F_2x^3 + F_3x^4 + ... + F_nx^{n + 1} \\
f(x)x^2 &= \qquad \qquad \ \ \ \ \ F_0x^2 + F_1x^3 + F_2x^4 + F_3x^5 + ... + F_nx^{n + 2}
\end{aligned}
\)
我们已知\(F_{n-2} + F_{n - 1} = F_n\),所以第二行加上第三行减去第一行可得:
\(\begin{aligned}
f(x)(x^2 + x - 1) &= F_0x - F_0 - F_1x \\
&= -x
\end{aligned}\)
经过变换可得\(f(x) = \cfrac{x}{1 - x - x^2}\)
现在求出了斐波那契数列的有限项代数式,那接下来的目标就是将其展开成无穷级数
将\(f(x)\)的分母\(1 - x - x^2\)分解因式可得\(1 - x - x^2 = (1 - ax)(1 - bx)\)
则设:
\(\begin{aligned}
f(x) &= \cfrac{c}{1 - ax} + \cfrac{d}{1 - bx} \\
&= \cfrac{c(1 - bx) + d(1 - ax)}{(1 - ax){1 - bx}} \\
&= \cfrac{(c + d) - (cb + da)x}{1 - (a + b)x + abx^2}
\end{aligned}\)
则\(\cfrac{(c + d) - (cb + da)x}{1 - (a + b)x + abx^2} = \cfrac{x}{1 - x - x^2}\),
那么则有: \(\begin{cases}
c + d = 0 \\
cb + da = -1 \\
a + b = 1 \\
ab = -1
\end{cases}\) \(\Longrightarrow\) \(c = \cfrac{1}{a - b}, \quad d = \cfrac{-1}{a - b}\)
将其带入:
\(\begin{aligned}
f(x) &= \cfrac{x}{1 - x - x^2} \\
&= \cfrac{c}{1 - ax} + \cfrac{d}{1 - bx} \\
&= \cfrac{1}{a - b} \cfrac{1}{1 - ax} + \cfrac{-1}{a - b} \cfrac{1}{1 - bx} \\
&= \cfrac{1}{a - b}(\cfrac{1}{1 - ax} - \cfrac{1}{1 - bx})
\end{aligned}\)
将\(\cfrac{1}{1 - ax} = (1 + ax + a^2x^2 + ... + a^nx^2)\)带入则有:
\(\begin{aligned}
f(x) &= \cfrac{1}{a - b}(\cfrac{1}{1 - ax} - \cfrac{1}{1 - bx}) \\
&= \cfrac{1}{a - b}((1 + ax + a^2x^2 + ... + a^nx^2) - (1 + bx + b^2x^2 + ... + b^nx^2)) \\
&= \cfrac{1}{a - b}((a - b)x + (a^2 - b^2)x^2 + ... + (a^2 - b^2)x^n) \\
&= \cfrac{a - b}{a - b}x + \cfrac{a^2 - b^2}{a - b}x^2 + \cfrac{a^n - b^n}{a - b}x^n
\end{aligned}\)
整理可得:
\(\begin{aligned}f(x) = \underbrace{0} \\ F_0 \end{aligned}\) \(\begin{aligned} + \underbrace{\cfrac{a - b}{a - b}}x \\ F_1 \end{aligned}\) \(\begin{aligned} + \cdot \cdot \cdot + \underbrace{\cfrac{a^n - b^n}{a - b}}x^n \\ F_n \end{aligned}\)
则斐波那契数列的通项公式为:\(F_n = \cfrac{a^n - b^n}{a - b}\)
根据:\(\begin{cases}
a + b = 1 \\
ab = -1
\end{cases}\) 和一元二次求根公式可得:\(x = \cfrac{1 \pm \sqrt{5}}{2}\)
那么令:\(\begin{cases} a = \cfrac{1 + \sqrt{5}}{2} \\ b = \cfrac{1 - \sqrt{5}}{2} \end{cases}\) 将其带入通项公式可得:\(F_n = \cfrac{1}{\sqrt{5}}((\cfrac{1 + \sqrt{5}}{2})^n - (\cfrac{1 + \sqrt{5}}{2})^n)\)
斐波那契数列通项公式
\(F_n = \cfrac{1}{\sqrt{5}}((\cfrac{1 + \sqrt{5}}{2})^n - (\cfrac{1 + \sqrt{5}}{2})^n)\)
总结
根据数列 \(\rightarrow\) 生成函数 \(\rightarrow\) 求出有限项代数式 \(\rightarrow\) 求出无穷级数 \(\rightarrow\) 得到通项公式

浙公网安备 33010602011771号