多线程
多线程

- 线程就是独立的执行路径
- 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程,gc线程
- main()称之为主线程,为系统的入口,用于执行整个程序
- 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为干预的
- 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制
- 线程会带来额外的开销,如CPU调度时间,并发控制开销
- 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致
线程创建1:Thread

public class TestThread1 extends Thread {
@Override
public void run() {
//run方法线程体
for(int i=0; i<20; i++) {
System.out.println("我在看代码---"+i);
}
}
public static void main(String[] args) {
//main线程,主线程
//创建一个线程对象
TestThread1 testThread1 = new TestThread1();
testThread1.start();
for(int i=0; i<2000; i++) {
System.out.println("我在学习多线程---"+i);
}
}
}

实例:网图下载
使用针对开发IO流功能的工具类库 Commons IO
public class TestThread2 {
private String url; //网络图片地址
private String name; //保存的文件名
public TestThread2(String url, String name) {
this.url = url;
this.name = name;
}
@Override
public void run() {
WebDownloader webdownloader = new WebDownloader();
webdownloader.downloader(url,name);
System.out.println("下载了文件名为:" +name);
}
public static void main(String[] args) {
TestThread2 t1 = new TestThread2("https://gitlab.cnblogs.com/bd/ad/uploads/243ed71b7658b743b2868080a8cc16e2/600-500-2.jpg","1.jpg");
TestThread2 t2 = new TestThread2("https://gitlab.cnblogs.com/bd/ad/uploads/243ed71b7658b743b2868080a8cc16e2/600-500-2.jpg","2.jpg");
TestThread2 t3 = new TestThread2("https://gitlab.cnblogs.com/bd/ad/uploads/243ed71b7658b743b2868080a8cc16e2/600-500-2.jpg","3.jpg");
t1.start();
t2.start();
t3.start();
}
}
class WebDownloader {
public void downloader(String url, String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
线程创建2:实现Runnable接口

public class TestThread3 implements Runnable{
@Override
public void run() {
//run方法线程体
for(int i=0; i<20; i++) {
System.out.println("我在看代码---"+i);
}
}
public static void main(String[] args) {
//创建runnable接口的实现类对象
TestThread3 testThread3 = new TestThread3();
//创建线程对象,通过线程对象来开启我们的线程,代理
Thread thread = new Thread(testThread3);
thread.start();
//new Thread(testThread3).start();
for(int i=0; i<2000; i++) {
System.out.println("我在学习多线程---"+i);
}
}
}
小结

//多个线程同时操作同一个对象
//发现问题:多个线程操作同一个资源的情况下,线程不安全,数据紊乱
public class TestThread4 implements Runnable {
//票数
private int ticketNums = 10;
@Override
public void run() {
while(true) {
if (ticketNums<=0) {
break;
}
//模拟延时
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"-->拿到了第"+ticketNums--+"票");
}
}
public static void main(String[] args) {
TestThread4 ticket = new TestThread4();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
}
案列:龟兔赛跑
public class Race implements Runnable {
//胜利者
private static String winner;
@Override
public void run() {
for (int i = 0; i <= 100; i++){
//模拟兔子休息
if (Thread.currentThread().getName().equals("兔子") && i%10==0){
Thread.sleep(200);
}
//判断比赛是否结束
boolean flag = gameOver(i);
if(flag){
break;
}
System.out.println(Thread.currentThread().getName()+"-->跑了"+i+"步");
}
}
//判断是否完成了比赛
private boolean gameOver(int steps) {
//判断是否有胜利者
if (winner!=null){//已经存在胜利者了
return true;
}{
if (steps>=100){
winner = Thread.currentThread().getName();
System.out.println("winner is "+winner);
return true;
}
}
return false;
}
public static void main(String[] args) {
}
}
线程创建3:实现Callable接口
public class TestCallable implements Callable<Boolean> {
private String url; //网络图片地址
private String name; //保存的文件名
public TestThread2(String url, String name) {
this.url = url;
this.name = name;
}
@Override
public Boolean call() {
WebDownloader webdownloader = new WebDownloader();
webdownloader.downloader(url,name);
System.out.println("下载了文件名为:" +name);
}
public static void main(String[] args) {
TestCallable t1 = new TestCallable("https://gitlab.cnblogs.com/bd/ad/uploads/243ed71b7658b743b2868080a8cc16e2/600-500-2.jpg","1.jpg");
TestCallable t2 = new TestCallable("https://gitlab.cnblogs.com/bd/ad/uploads/243ed71b7658b743b2868080a8cc16e2/600-500-2.jpg","2.jpg");
TestCallable t3 = new TestCallable("https://gitlab.cnblogs.com/bd/ad/uploads/243ed71b7658b743b2868080a8cc16e2/600-500-2.jpg","3.jpg");
//创建执行服务:
ExecutorService ser = Executors.newFixedThreadPool(3);
//提交执行
Future<Boolean> r1 = ser.submit(t1);
Future<Boolean> r2 = ser.submit(t2);
Future<Boolean> r3 = ser.submit(t3);
//获取结果
boolean rs1 = r1.get();
boolean rs2 = r2.get();
boolean rs3 = r3.get();
//关闭服务
ser.shutdownNow();
}
}
class WebDownloader {
public void downloader(String url, String name) {
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
静态代理模式
public class StaticProxy {
public static void main(String[] args) {
You you = new You(); //你要结婚
WeddingCompany weddingCompany = new WeddingCompany(you);
weddingCompany.HappyMarry();
}
}
interface Marry {
void HappyMarry();
}
//真实角色,你去结婚
class You implements Marry {
@Override
public void HappyMarry() {
System.out.println("秦老师要结婚了,超开心");
}
}
//代理角色,帮助你结婚
class WeddingCompany implements Marry {
private Marry target;
public WeddingCompany(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() {
before();
this.target.HappyMarry(); //这就是真实对象
after();
}
private void before() {
System.out.println("结婚之前,布置现场");
}
private void after() {
System.out.println("结婚之后,收尾款");
}
}
总结
- 真实对象和代理对象都要实现同一个接口
- 代理对象要代理真实对象
好处
- 代理对象可以做很多真实对象做不了的事情
- 真实对象专注做自己的事情
类比多线程
new Thread( ()-> System.out.println("我爱你") ).start();
new WeddingCompany(new You()).HappyMarry();
Lamda表达式
为什么使用lamda表达式
- 可以让代码看起来更简洁
- 避免匿名内部类定义过多
- 去掉了一堆没有意义的代码,只留下核心的逻辑
函数式接口
- 任何接口,如果只包含唯一一个抽象方法,那么它就是一个函数式接口
public interface Runnable {
public abstract void run();
}
- 对于函数式接口,我们可以通过lamda表达式来创建该接口的对象
//推导lamda表达式
public class TestLamda1 {
//静态内部类
3.static class Like2 implements ILike {
@Override
public void lamda() {
System.out.println("i like lamda2");
}
}
public static void main(String[] args) {
ILike like = new Like();
like.lamda();
like = new Like2();
like.lamda();
//4.局部内部类
class Like3 implements ILike {
@Override
public void lamda() {
System.out.println("i like lamda3");
}
}
like = new Like3();
like.lamda();
//5.匿名局部类,没有类名,必须借助接口或者父类
like = new ILike() {
@Override
public void lamda() {
System.out.println("i like lamda4");
}
};
like.lamda();
//6.用lamda简化
like = ()->{
System.out.println("i like lamda5");
};
like.lamda();
}
}
//1.定义一个接口
interface ILike {
void lamda();
}
//2.实现类
class Like implements ILike {
@Override
public void lamda() {
System.out.println("i like lamda");
}
}
//1.lamda表示简化
ILove love = (int a)-> {
System.out.println("i love you-->"+a);
};
//简化1.参数类型
love = (a)-> {
System.out.println("i love you-->"+a);
};
//简化2.简化括号
love = a-> {
System.out.println("i love you-->"+a);
};
//简化3.去掉花括号(只有一行代码)
love = a-> System.out.println("i love you-->"+a);
love.love(521);
多个参数也可以去掉参数类型,要去掉都去掉,必须加上括号
线程状态

线程方法

线程停止
- 不推荐JDK提供的stop()、destroy()方法
- 推荐线程自己停止下来
- 建议使用一个标志位进行终止变量,当flag=false,则终止线程运行
//1.建议线程正常停止---->利用次数,不建议死循环
//2.建议使用标志位---->设置一个标志位
//3.不要使用stop或者destroy
public class TestStop implements Runnable{
//1.设置一个标志位
private boolean flag = true;
@Override
public void run() {
int i = 0;
while(flag) {
System.out.println("run....Thread"+i++);
}
}
//2.设置一个公开的方法停止线程,转换标志位
public void stop() {
this.flag = false;
}
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
for (int i = 0; i < 1000; i++) {
System.out.println("main"+i);
if(i==900){
testStop.stop();
System.out.println("线程该停止了");
}
}
}
}
线程休眠

//模拟网络延时:方法问题的发生性
public class TestSleep implements Runnable {
private int tickerNums = 10;
@Override
public void run() {
while(true) {
if(ticketNums<=0){
break;
}
//模拟延时
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"-->拿到了第"+ticketNums--+"票");
}
}
public static void main(String[] args) {
TestSleep ticket = new TestSleep();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
}
//模拟倒计时
public class TestSleep2 implements Runnable {
public static void tenDown() throws InterruptedException {
int num = 10;
while (true) {
Thread.sleep(1000);
System.out.println(num--);
if (num<=0){
break;
}
}
}
public static void main(String[] args) {
//打印当前系统时间
Date startTime = new Date(System.currentTimeMillis());
while (true) {
try {
Thread.sleep(1000);
System.out.println(new SimpleDateFormat("HH:mm:ss").format(startTime));
startTime = new Date(System.currentTimeMillis()); //更新当前时间
} catch (InterruptedException e) {
e.printStackTrace();
}
}
try {
tenDown();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
线程礼让
- 礼让线程,让当前正在执行的线程暂停,但不阻塞
- 将线程从运行状态转为就绪状态
- 让cpu重新调度,礼让不一定成功!看CPU心情
public class TestYield {
public static void main(String[] args) {
MyYield myYield = new MyYield();
new Thread(myYield,"a").start();
new Thread(myYield,"b").start();
}
}
class MyYield implements Runnable {
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield(); //礼让
System.out.println(Thread.currentThread().getName()+"线程停止执行");
}
}
Join
- Join合并线程,待此线程执行完成后,再执行其他线程,其他线程阻塞
- 可以想象成插队
public class TestJoin implements Runnable {
@Override
public void run() {
for (int i = 0; i < 1000; i++) {
System.out.println("线程vip来了"+i);
}
}
public static void main(String[] args) throws InterruptedException{
//启动我们的线程
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start();
//主线程
for (int i = 0; i < 500; i++) {
if(i==200){
thread.join(); //插队
}
System.out.println("main"+i);
}
}
}
线程状态观测
//观察测试线程的状态
public class TestState {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(()->{
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("///////");
});
//观察状态
Thread.State state = thread.getState();
System.out.println(state); //NEW
//观察启动后
thread.start();
state = thread.getState();
System.out.println(state); //Run
while (state != Thread.State.TERMINATED){
Thread.sleep(100);
state = thread.getState();
System.out.println(state);
}
thread.start();//报错
}
}
线程中断或者结束,一旦进入死亡状态,就不能再次启动
线程的优先级

public class TestPriority {
public static void main(String[] args) {
//主线程默认优先级5
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
Thread t5 = new Thread(myPriority);
Thread t6 = new Thread(myPriority);
//先设置优先级,再启动
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
t4.setPriority(Thread.MAX_PRIORITY);
t4.start();
}
}
class MyPriority implements Runnable {
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
}
}
注意
线程的优先级低只是意味着获得调度的概率低,并不是优先级低就不会被调用了,这都是看CPU的调度
守护线程daemon
- 线程分为用户线程和守护线程
- 虚拟机必须确保用户线程执行完毕main()
- 虚拟机不用等待守护线程执行完毕gc()
- 如后台记录操作日志,监控内存,垃圾回收等待
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true);//默认是false表示是用户线程
thread.start();
new Thread(you).start();
}
}
class God implements Runnable {
@Override
public void run() {
while (true) {
System.out.println("上帝保佑着你");
}
}
}
class You implements Runnable {
@Override
public void run() {
for (int i = 0; i < 36500; i++){
System.out.println("你一生都开心的活着");
}
System.out.println("=====goodbye! world!=====");
}
}
线程同步机制
-
并发:同一个对象被多个线程同时操作(抢票、两个银行同时取钱)
-
处理多线程问题时,多个线程访问同一个对象,并且某些线程还想修改这个对象,这时候我们就需要线程同步。线程同步其实就是一种等待机制,多个需要同时访问此对象的线程进入这个对象的等待池形成队列,等待前面线程使用完毕,下一个线程再使用
-
队列和锁

不安全案例
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket station = new BuyTicket();
new Thread(station,"苦逼的我").start();
new Thread(station,"牛逼的你们").start();
new Thread(station,"可恶的黄牛党").start();
}
}
class BuyTicket implements Runnable {
private int ticketNums = 10;
boolean flag = true;
@Override
public void run() {
//买票
while(flag) {
try{
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//synchronized 同步方法,锁的是this
private synchronized void buy() throws InterruptedException {
//判断是否有票
if(ticketNums<=0) {
flag = false;
return;
}
//模拟延时
Thread.sleep(100);
//买票
System.out.println(Thread.currentThread().getName()+"拿到"+ticketNums--);
}
}
public class UnsafeBank {
public static void main(String[] args) {
Account account = new Account(100,"结婚基金");
Drawing you = new Drawing(account,50,"你");
Drawing girlFriend = new Drawing(account,100,"girlFriend");
you.start();
girlFriend.start();
}
}
//账户
class Account {
int money; //余额
String name; //卡名
public Account(int money, String name) {
this.money = money;
this.name = name;
}
}
//银行:模拟取款
class Drawing extends Thread {
Account account;
int drawingMoney;
int nowMoney;
public Drawing(Account account, int drawingMoney, String name) {
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
@Override
public void run() {
//锁的对象就是变化的量,需要增删改的对象
synchronized (account) {
//判断有没有钱
if(account.money-drawingMoney<0) {
System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
return;
}
//sleep可以放大问题的发生性
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
account.money = account.money - drawingMoney;
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
//Thread.currentThread().getName() = this.getName()
System.out.println(this.getName());
}
}
}
线程不安全的集合
public class UnsafeList {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
synchronized (list) {
list.add(Thread.currentThread().getName());
}
}).start();
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size()); //小于10000,覆盖了
}
}
同步方法及同步块

同步方法弊端
- 方法里面需要修改的内容才需要锁,锁的太多,浪费资源
测试JUC安全类型的集合
public class TestJUC {
public static void main(String[] args) {
CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
死锁
//死锁:多个线程互相抱着对方需要的资源,然后形成僵持
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0,"灰姑娘");
Makeup g2 = new Makeup(1,"白雪公主");
g1.start();
g2.start();
}
}
class LipStick {
}
class Mirror {
}
class Makeup extends Thread {
//需要的资源只有一份,用static来保证只有一份
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice;
String girlName;
Makeup(int choice, String girlName) {
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//化妆,互相持有对方的锁,就是需要拿到对方的资源
private void makeup() throws InterruptedException {
if (choice==0) {
synchronized (lipstick) { //获得口红的锁
System.out.println(this.girlName+"获得口红的锁");
Thread.sleep(1000);
synchronized (mirror) { //一秒钟后想获得镜子
System.out.println(this.girlName+"获得镜子的锁");
} //代码快拿出来,即可解决死锁
}
} else {
synchronized (mirror) { //获得镜子的锁
System.out.println(this.girlName+"获得镜子的锁");
Thread.sleep(1000);
synchronized (lipstick) { //一秒钟后想获得口红
System.out.println(this.girlName+"获得口红的锁");
}
}
}
}
}
产生死锁的四个必要条件
- 互斥条件:一个资源每次只能被一个进程使用
- 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放
- 不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺
- 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系
Lock锁

public class TestLock {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
class TestLock2 implements Runnable {
int ticketNums = 10;
//定义lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true) {
try {
lock.lock(); //加锁
if (ticketNums>0) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNums--);
} else {
break;
}
} finally {
lock.unlock(); //解锁
}
}
}
}
synchronized与Lock的对比
- Lock是显式锁(手动开启和关闭锁),synchronized是隐式锁,出了作用域自动释放
- Lock只有代码块锁,synchronized有代码块锁和方法锁
- 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
- 优先使用顺序
- Lock > 同步代码块 > 同步方法
线程协作
生产者和消费者问题

解决方法一:管程法
生产者将生产好的数据放入缓冲区,消费者从缓冲区拿出数据
public class TestPC {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
//生产者
class Productor extends Thread {
SynContainer container;
public Productor(SynContainer container) {
this.container = container;
}
//生产
@Override
public void run() {
for (int i = 0; i < 100; i++) {
container.push(new Chicken(i));
System.out.println("生产了"+i+"只鸡");
}
}
}
//消费者
class Consumer extends Thread {
SynContainer container;
public Consumer(SynContainer container) {
this.container = container;
}
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了-->"+container.pop().id+"只鸡");
}
}
}
//产品
class Chicken {
int id; //产品编号
public Chicken(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer {
//需要一个容器大小
Chicken[] chickens = new Chicken[10];
//容器计数器
int count = 0;
//生产者放入产品
public synchronized void push(Chicken chicken) {
//如果容器满了,就需要等待消费者消费
if (count==chickens.length) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
//通知消费者消费,生产等待
}
//如果没有满,我们就需要丢入产品
chickens[count]=chicken;
couunt++;
//可以通知消费者消费了
this.notifyAll();
}
//消费者消费产品
public synchronized Chicken pop() {
//判断能否消费
if (count==0) {
//等待生产者生产,消费者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果可以消费
count--;
Chicken chicken = chickens[count];
//通知生产者生产
this.notifyAll();
return chicken;
}
}
解决方法二:信号灯法
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者-->演员
class Player extends Thread {
TV tv;
public Player(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if (i%2==0) {
this.tv.play("快乐大本营播放中");
}else {
this.tv.play("抖音记录美好生活");
}
}
}
}
//消费者-->观众
class Watcher extends Thread {
TV tv;
public Watcher(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
tv.watch();
}
}
}
//产品-->节目
class TV {
//演员表演,观众等待 T
//观众观看,演员等待 F
String voice; //表演的节目
boolean flag = true;
//表演
public synchronized void play(String voice) {
if(!flag) {
try {
this.wait();
} catch(InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("演员表演了:"+voice);
//通知观众观看
this.notifyAll();
this.voice = voice;
this.flag = !this.flag;
}
//观看
public synchronized void watch(){
if (flag) {
try {
this.wait();
} catch(InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看了:"+voice);
//通知演员表演
this.notifyAll();
this.flag = !this.flag;
}
}
线程池


public class TestPool {
public static void main(String[] args) {
//1.创建服务,创建线程池
ExecutorService service = Executors.newFixedThreadPool(10); //线程池大小为10
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//2.关闭连接
service.shutdown();
}
}
class MyThread implements Runnable {
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+i);
}
}

浙公网安备 33010602011771号