问题描述
真实案例,农业领域经常需要计算对象个数 或者在其它领域拍照自动计数,可以提供效率,减低成本
解决思路
通过二值分割+形态学处理+距离变换+连通区域计算
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
Mat gray_src, binary, dst;
Mat src = imread("D:/case5.png");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
cvtColor(src, gray_src, COLOR_BGR2GRAY);
// 二值分割
threshold(gray_src, binary, 0, 255, THRESH_BINARY | THRESH_TRIANGLE);
imshow("binary image", binary);
// 形态学操作
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
// 膨胀
dilate(binary, binary, kernel, Point(-1, -1), 3);
imshow("dilate image", binary);
// 距离变换
Mat dist;
// 取反
bitwise_not(binary, binary);
distanceTransform(binary, dist, CV_DIST_L2, 3);
// 归一化
normalize(dist, dist, 0, 1.0, NORM_MINMAX);
imshow("dist image", dist);
// 阈值化二值分割
Mat dist_8u;
dist.convertTo(dist_8u, CV_8U);
// 高斯阈值 101 必须是奇数
adaptiveThreshold(dist_8u, dist_8u, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 101, 0.0);
kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
dilate(dist_8u, dist_8u, kernel, Point(-1, -1), 2);
imshow("dist-binary", dist_8u);
// 连通区域计数
vector<vector<Point>> contours;
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
// draw result
Mat markers = Mat::zeros(src.size(), CV_8UC3);
RNG rng(12345);
for (size_t t = 0; t < contours.size(); t++) {
drawContours(markers, contours, static_cast<int>(t), Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)),
-1, 8, Mat());
}
printf("number of corns : %d", contours.size());
imshow("Final result", markers);
waitKey(0);
return 0;
}