ARC123E Training

ARC123E Training

i=1n[a+ic=b+id]\sum_{i=1}^{n}[a+\lfloor\frac{i}{c}\rfloor=b+\lfloor\frac{i}{d}\rfloor]

不妨设 c<dc<d,排除特殊情况,此时 a<ba<b

设式子左右边分别为 f(i),g(i)f(i),g(i),则答案即为 f(i)g(i)=0f(i)-g(i)=0 的个数。

不难发现 f(i)g(i)f(i)-g(i) 这个值相邻的差的绝对值不超过 11,所以不会出现 1-111 相邻的情况。

不难想到,ic\lfloor\frac{i}{c}\rfloor 的增长速度更快,故 f(i)g(i)f(i)-g(i) 不严格递增,且当 f(i)g(i)=2f(i)-g(i)=2 时,后面只可能出现 11 或更大的数,不可能出现 00

故二分出第一个出现的 001122 的位置 l,p,rl,p,r;

则有 i[l,p1]\forall i\in[l,p-1]f(i)g(i)[1,0]f(i)-g(i)\in[-1,0]i[p,r1]\forall i\in [p,r-1]f(i)g(i)[0,1]f(i)-g(i)\in[0,1]

O(1)\mathcal O(1)i=lric\sum\limits_{i=l}^{r}\lfloor\frac{i}{c}\rfloor 后用长度减去后加上和,讨论一下即可。

时间复杂度 O(Tlogm)\mathcal O(T\log m)

#include<bits/stdc++.h>

using namespace std;

#define int long long
typedef long long ll;
#define ha putchar(' ')
#define he putchar('\n')

inline int read() {
	int x = 0, f = 1;
	char c = getchar();
	while (c < '0' || c > '9') {
		if (c == '-')
			f = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9')
		x = x * 10 + c - '0', c = getchar();
	return x * f;
}

inline void write(int x) {
	if (x < 0) {
		putchar('-');
		x = -x;
	}
	if (x > 9)
		write(x / 10);
	putchar(x % 10 + '0');
}

int m, ax, bx, ay, by;

int calc(int x, int y, int p) {
	int l = 0, r = m / x, res = r + 1;
	while (l <= r) {
		int mid = (l + r) >> 1;
		if (mid - mid * x / y >= p) res = mid, r = mid - 1;
		else l = mid + 1;
	}
	return res * x;
}

int S(int n, int x, int c) {
	int k = n / c, res = c * k * (k + 1) / 2;
	if (n != (k + 1) * c - 1) res = res - k * ((k + 1) * c - 1 - n);
	return n * x + res;
}

int sum(int l, int r) {
	if (r < l) return 0;
	return S(r, ax, bx) - S(l - 1, ax, bx) - S(r, ay, by) + S(l - 1, ay, by);
}

signed main() {
	int T = read();
	while (T--) {
		m = read(), ax = read(), bx = read(), ay = read(), by = read();
		if (bx == by) {
			if (ax == ay) write(m), he;
			else write(0), he;
			continue;
		}
		if (bx > by)
			swap(ax, ay), swap(bx, by);
		if (ax > ay) {
			write(0), he;
			continue;
		}
		int l = calc(bx, by, ay - ax), p = calc(bx, by, ay - ax + 1), r = calc(bx, by, ay - ax + 2);
		l = max(l, 1ll);
		if (l > m) {
			write(0), he;
			continue;
		}
		if (p > m) {
			write(m + 1 - l + sum(l + 1, m)), he;
			continue;
		}
		if (r > m) r = m + 1;
		write(p - l + sum(l + 1, p - 1) + r - p - sum(p, r - 1)), he;
	}
	return 0;
}
posted @ 2022-07-28 19:32  蒟蒻orz  阅读(16)  评论(0)    收藏  举报  来源