最低通行费
最低通行费
题目
一个商人穿过一个N×N的正方形的网格,去参加一个非常重要的商务活动。
他要从网格的左上角进,右下角出。
每穿越中间1个小方格,都要花费1个单位时间。
商人必须在(2N-1)个单位时间穿越出去。
而在经过中间的每个小方格时,都需要缴纳一定的费用。
这个商人期望在规定时间内用最少费用穿越出去。
请问至少需要多少费用?
注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。
输入格式
第一行是一个整数,表示正方形的宽度N。
后面N行,每行N个不大于100的整数,为网格上每个小方格的费用。
输出格式
输出一个整数,表示至少需要的费用。
数据范围
1 ≤ N ≤ 100 1≤N≤1001≤N≤100
输入样例
5
1 4 6 8 10
2 5 7 15 17
6 8 9 18 20
10 11 12 19 21
20 23 25 29 33
输出样例
109
#include <iostream>
#include <cstring>
using namespace std;
const int N = 105, MAX = 0x3f3f3f3f;
int n, w[N][N], f[N][N];
int main () {
cin >> n;
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= n; j ++)
cin >> w[i][j];
for (int i = 2; i <= n; i ++) f[0][i] = MAX, f[i][0] = MAX;
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= n; j ++)
f[i][j] = min(f[i-1][j], f[i][j-1]) + w[i][j];
cout << f[n][n];
return 0;
}