lucas 定理简单证明
已知 \(p\) 是质数。
\[\because x^p\equiv x\pmod p
\]
\[\text{令 }p\text{ 进制下 }a=\sum a_ip^i,b=\sum b_ip^i
\]
\[\therefore (1+x)^a\equiv (1+x)^{\sum a_ip^i}\equiv (1+x)^{\sum a_i}\equiv\prod(1+x^{p^i})^{a_i}\pmod p
\]
\[\therefore\prod\left[\sum\binom{a_i}{b_i}x^{b_ip^i}\right]\equiv\sum\left[\prod\binom{a_i}{b_i}\right]x^b\equiv\sum\binom{\sum a_ip^i}{b}x^b\pmod p
\]
\[\prod\binom{a_i}{b_i}\equiv\binom{a}{b}\pmod p
\]