科学公式测试

测试

$$E=mc^2$$

假定n<m

$$ \sum_{isprime(p)}\sum_{a=1}^n\sum_{b=1}^mgcd(a,b)==p $$

$$ \sum_{isprime(p)}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}gcd(a,b)==1 $$

$$ \sum_{isprime(p)}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}\sum_{d|a\&d|b}\mu(d) $$

$$ \sum_{isprime(p)}\sum_{d=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\mu(d) {\left \lfloor \frac{n}{pd} \right \rfloor}{\left \lfloor \frac{m}{pd} \right \rfloor} $$

但是做到这里我们发现直接枚举质数仍然会出事TAT,继续搞

$$ \sum_{isprime(p)\&p|d}\sum_{d}^{n} \mu \left( \frac{d}{p} \right) {\left \lfloor \frac{n}{d} \right \rfloor}{\left \lfloor \frac{m}{d} \right \rfloor} $$

令$$ f(d)=\sum_{isprime(p)\&p|d}\mu \left( \frac{d}{p} \right) $$

则原式变为

$$ \sum_{d=1}^{n} {\left \lfloor \frac{n}{d} \right \rfloor}{\left \lfloor \frac{m}{d} \right \rfloor}f(d) $$

联系 \( \mu \) 函数的定义,设h为d的质因子个数,g为d质因子指数和可得

$$ f(d)= \begin{cases} -\mu \left (d \right ) s& h=g\\ \left ( -1 \right )^s& h+1=g\\ 0& Otherwise \end{cases} $$

Inline 行内的公式  \( E=mc^2 \) 行内的公式。

$$c = \pm\sqrt{a^2 + b^2}$$

$$x > y$$

$$f(x) = x^2$$

$$\alpha = \sqrt{1-e^2}$$

$$(\sqrt{3x-1}+(1+x)^2)$$

$$\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))$$

$$ \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$

$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$

$$\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right)$$

$$a^2$$

$$a^{2+2}$$

$$a_2$$

$${x_2}^3$$

$$x_2^3$$

$$10^{10^{8}}$$

$$a_{i,j}$$

$$_nP_k$$

$$c = \pm\sqrt{a^2 + b^2}$$

$$\frac{1}{2}=0.5$$

$$\dfrac{k}{k-1} = 0.5$$

$$\dbinom{n}{k} \binom{n}{k}$$

$$\oint_C x^3\, dx + 4y^2\, dy$$

$$\bigcap_1^n p \bigcup_1^k p$$

$$e^{i \pi} + 1 = 0$$

$$\left ( \frac{1}{2} \right )$$

$$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$$

$${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$$

$$\textstyle \sum_{k=1}^N k^2$$

$$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n$$

$$\binom{n}{k}$$

$$0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots$$

$$\sum_{k=1}^N k^2$$

$$\textstyle \sum_{k=1}^N k^2$$

$$\prod_{i=1}^N x_i$$

$$\textstyle \prod_{i=1}^N x_i$$

$$\coprod_{i=1}^N x_i$$

$$\textstyle \coprod_{i=1}^N x_i$$

$$\int_{1}^{3}\frac{e^3/x}{x^2}\, dx$$

$$\int_C x^3\, dx + 4y^2\, dy$$

$${}_1^2\!\Omega_3^4$$

##### 多行公式 Multi line

> \`\`\`math or \`\`\`latex or \`\`\`katex

$$
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi
$$

$$
\displaystyle
\left( \sum\_{k=1}^n a\_k b\_k \right)^2
\leq
\left( \sum\_{k=1}^n a\_k^2 \right)
\left( \sum\_{k=1}^n b\_k^2 \right)
$$

$$
\dfrac{
\tfrac{1}{2}[1-(\tfrac{1}{2})^n] }
{ 1-\tfrac{1}{2} } = s_n
$$

$$
\displaystyle
\frac{1}{
\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{
\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {
1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}}
{1+\cdots} }
}
}
$$

$$
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi
$$

 1 #include<cstdio>
 2 using namespace std;
 3 #define ll long long
 4 
 5 int a,b,c;
 6 
 7 int Power(int a,int b,int p){
 8     int ans=1;
 9     for(;b;b>>=1,a=(ll)a*a%p)
10         if(b&1)ans=(ll)ans*a%p;
11     return ans;
12 }
13 
14 int main(){
15     scanf("%d%d%d",&a,&b,&c);
16     printf("%d",Power(a,b,c));
17     return 0;
18 }

 

posted @ 2018-08-09 09:45  OLM  阅读(110)  评论(0编辑  收藏  举报