CrossEntropyLoss



![]()

import numpy as np
y = np.array([1, 0, 0])
z = np.array([0.2, 0.1, -0.1])
y_pred = np.exp(z) / np.exp(z).sum()
loss = (-y * np.log(y_pred)).sum()
print(loss)

import torch y = torch.LongTensor([0]) z = torch.Tensor([[0.2, 0.1, -0.1]]) criterion = torch.nn.CrossEntropyLoss() loss = criterion(z, y) print(loss)
CrossEntropyLoss <==> LogSoftmax + NLLLoss

浙公网安备 33010602011771号