luogu2155 [SDOI2008]沙拉公主的困惑

link

求出1到N的阶乘中与M的阶乘互质的数的个数,对R取模,多组询问,R<=10^9+10,T<=10000,1 < = N , M < = 10000000

1到\(M!\)中与\(M!\)互质的数显然为\(\varphi(M)\),由于\(N!\)\(M!\)的倍数,所以一共有\(\frac {N!}{M!}\)组数,每组数都有\(\varphi(M)\)个数字与\(M!\)互质,所以答案为\(\frac{N!}{M!}\varphi(M!)\)

根据\(\varphi\)的计算式,枚举\(M!\)所有素数计算即可,即1M的素数,显然可以预处理,设n=10000000,由于1n内素数为\(\frac{n}{\ln n}\)个,而每个素数由于需要计算逆元,需要时间为\(O(\log n)\),总复杂度为\(O(n)\),预处理阶乘每次询问直接乘即可,询问复杂度\(O(1)\),预处理复杂度\(O(n)\)

#include <cstdio>
using namespace std;

bool vis[10000010];
int prime[10000010], tot, fuck = 10000000;
int prod[10000010], p;
int fac[10000010];
int qpow(int x, int y)
{
	int res = 1;
	for (x %= p; y > 0; y >>= 1, x = x * (long long)x % p) if (y & 1) res = res * (long long)x % p;
	return res;
}

int main()
{
	int t; scanf("%d%d", &t, &p);
	prod[1] = fac[1] = fac[0] = 1;
	for (int i = 2; i <= fuck; i++)
	{
		if (vis[i] == false) prime[++tot] = i, prod[i] = (i - 1) * (long long)qpow(i, p - 2) % p;
		else prod[i] = 1;
		for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
		{
			vis[i * prime[j]] = true;
			if (i % prime[j] == 0) break;
		}
		prod[i] = prod[i] * (long long)prod[i - 1] % p;
		fac[i] = i * (long long)fac[i - 1] % p;
	}
	while (t --> 0)
	{
		int n, m;
		scanf("%d%d", &n, &m);
		printf("%d\n", (int)(fac[n] * (long long)prod[m] % p));
	}
	return 0;
}

38行一遍A

upd:观察了pinkrabbit的题解,发现这么写是错的,对于n>=r的情况,n中的因子r可能会和phi中的逆元消掉(phi中因子没有逆元的假象掩盖了事实)

解决方法类似扩展卢卡斯,记录成\(x*y^b\)的形式。不过感觉出题人不会弄成这么毒瘤,除了你谷的管理员加强数据,就不改了,长个记性就行。。。真相:由于懒癌

posted @ 2019-01-22 07:41  ghj1222  阅读(167)  评论(0编辑  收藏  举报