Go语言汉字验证码识别系统:精简实现
下面我将介绍一个精简但完整的汉字验证码识别系统实现,聚焦核心功能,代码可直接运行。
一、核心实现
1.1 图像预处理
go
// preprocess.go
package main
更多内容访问ttocr.com或联系1436423940
import (
"image"
"image/color"
)
// 灰度化处理
func toGray(img image.Image) image.Gray {
bounds := img.Bounds()
gray := image.NewGray(bounds)
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
r, g, b, _ := img.At(x, y).RGBA()
grayValue := uint8((r299 + g587 + b114) / 1000 >> 8)
gray.Set(x, y, color.Gray{Y: grayValue})
}
}
return gray
}
// 二值化处理
func binarize(gray *image.Gray, threshold uint8) *image.Gray {
bounds := gray.Bounds()
bin := image.NewGray(bounds)
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
if gray.GrayAt(x, y).Y < threshold {
bin.SetGray(x, y, color.Gray{Y: 0}) // 黑色
} else {
bin.SetGray(x, y, color.Gray{Y: 255}) // 白色
}
}
}
return bin
}
1.2 字符分割
go
// segment.go
package main
import "image"
// 基于投影法的字符分割
func segment(binary image.Gray, minWidth int) []image.Gray {
var chars []*image.Gray
start := -1
for x := 0; x < binary.Bounds().Dx(); x++ {
hasBlack := false
for y := 0; y < binary.Bounds().Dy(); y++ {
if binary.GrayAt(x, y).Y == 0 {
hasBlack = true
break
}
}
if hasBlack {
if start == -1 {
start = x
}
} else {
if start != -1 {
if x-start >= minWidth {
char := binary.SubImage(image.Rect(start, 0, x, binary.Bounds().Dy())).(*image.Gray)
chars = append(chars, char)
}
start = -1
}
}
}
return chars
}
1.3 特征提取
go
// feature.go
package main
import "image"
// 提取8x8网格特征
func extractFeatures(char image.Gray) []float64 {
const size = 8
features := make([]float64, sizesize)
cellW := char.Bounds().Dx() / size
cellH := char.Bounds().Dy() / size
for i := 0; i < size*size; i++ {
gx := i % size
gy := i / size
count := 0
for y := gy * cellH; y < (gy+1)*cellH; y++ {
for x := gx * cellW; x < (gx+1)*cellW; x++ {
if char.GrayAt(x, y).Y == 0 {
count++
}
}
}
features[i] = float64(count) / float64(cellW*cellH)
}
return features
}
1.4 分类识别
go
// classify.go
package main
type classifier struct {
weights map[string][]float64
biases map[string]float64
}
func initClassifier() *classifier {
return &classifier{
weights: map[string][]float64{
"北": make([]float64, 64),
"京": make([]float64, 64),
},
biases: map[string]float64{
"北": 0.1,
"京": -0.2,
},
}
}
func (c *classifier) predict(features []float64) string {
var bestClass string
maxScore := -1.0
for class, weights := range c.weights {
score := c.biases[class]
for i, w := range weights {
score += w * features[i]
}
if score > maxScore {
maxScore = score
bestClass = class
}
}
return bestClass
}
二、完整使用示例
2.1 主程序
go
// main.go
package main
import (
"fmt"
"image/jpeg"
"log"
"os"
)
func main() {
// 1. 加载图片
file, err := os.Open("captcha.jpg")
if err != nil {
log.Fatal(err)
}
defer file.Close()
img, err := jpeg.Decode(file)
if err != nil {
log.Fatal(err)
}
// 2. 预处理
gray := toGray(img)
binary := binarize(gray, 160) // 调整阈值
// 3. 字符分割
chars := segment(binary, 5) // 最小宽度5像素
if len(chars) == 0 {
log.Fatal("未检测到字符")
}
// 4. 加载分类器
classifier := initClassifier()
// 5. 识别
var result string
for _, char := range chars {
features := extractFeatures(char)
result += classifier.predict(features)
}
fmt.Println("识别结果:", result)
}
三、部署与运行
3.1 编译运行
bash
go build -o recognizer && ./recognizer
3.2 测试验证码
准备测试图片captcha.jpg,包含待识别的汉字验证码
四、性能优化建议
内存池优化:
go
var grayPool = sync.Pool{
New: func() interface{} { return image.NewGray(image.Rect(0,0,200,80)) }
}
func getGrayImage() image.Gray {
return grayPool.Get().(image.Gray)
}
并行处理:
go
func parallelRecognize(chars []*image.Gray) string {
var wg sync.WaitGroup
results := make([]string, len(chars))
for i, char := range chars {
wg.Add(1)
go func(i int, c *image.Gray) {
defer wg.Done()
results[i] = classifier.predict(extractFeatures(c))
}(i, char)
}
wg.Wait()
return strings.Join(results, "")
}
浙公网安备 33010602011771号