验证码识别系统开发实战(Rust版)

核心组件实现

  1. 验证码生成模块
    rust
    use image::{ImageBuffer, Rgb};
    use rand::{thread_rng, Rng};
    use std::path::Path;
    更多内容访问ttocr.com或联系1436423940
    pub fn generate_captcha() -> (String, ImageBuffer<Rgb, Vec>) {
    let mut rng = thread_rng();
    let chars: Vec = "ABCDEFGHJKLMNPQRSTUVWXYZ23456789".chars().collect();
    let text: String = (0..4).map(|_| chars[rng.gen_range(0..chars.len())]).collect();

    let mut img = ImageBuffer::new(120, 40);

    // 绘制背景
    for pixel in img.pixels_mut() {
    *pixel = Rgb([255, 255, 255]);
    }

    // 绘制文字
    for (i, c) in text.chars().enumerate() {
    let x = 10 + i * 30;
    let y = rng.gen_range(10..30);
    draw_char(&mut img, x, y, c);
    }

    // 添加干扰线
    for _ in 0..3 {
    let x1 = rng.gen_range(0..120);
    let y1 = rng.gen_range(0..40);
    let x2 = rng.gen_range(0..120);
    let y2 = rng.gen_range(0..40);
    draw_line(&mut img, x1, y1, x2, y2);
    }

    (text, img)
    }

fn draw_char(img: &mut ImageBuffer<Rgb, Vec>, x: u32, y: u32, c: char) {
// 字符绘制实现
// ...
}
2. 深度学习模型接口(Python)
python

model.py

import tensorflow as tf
import numpy as np

class CaptchaModel:
def init(self):
self.model = self.build_model()

def build_model(self):
    model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(32, (3,3), activation='relu', 
                             input_shape=(40, 120, 1)),
        tf.keras.layers.MaxPooling2D((2,2)),
        tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(32*4, activation='softmax'),
        tf.keras.layers.Reshape((4, 32))
    ])
    model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
    return model

def predict_image(self, img_path):
    img = tf.io.read_file(img_path)
    img = tf.image.decode_png(img, channels=1)
    img = tf.image.resize(img, [40, 120])
    img = tf.expand_dims(img/255.0, axis=0)
    pred = self.model.predict(img)
    chars = "ABCDEFGHJKLMNPQRSTUVWXYZ23456789"
    return ''.join([chars[np.argmax(p)] for p in pred[0]])
  1. Rust调用Python模型
    rust
    use std::process::Command;

pub fn predict_captcha(img_path: &str) -> String {
let output = Command::new("python")
.arg("model.py")
.arg(img_path)
.output()
.expect("Failed to execute Python script");

String::from_utf8_lossy(&output.stdout).trim().to_string()

}
性能优化技巧
并发处理

rust
use rayon::prelude:😗;

fn batch_generate(count: usize) -> Vec<(String, ImageBuffer<Rgb, Vec>)> {
(0..count).into_par_iter()
.map(|_| generate_captcha())
.collect()
}
内存优化

rust
pub fn preprocess_image(img: &ImageBuffer<Rgb, Vec>) -> Vec {
img.pixels()
.flat_map(|p| [p[0] as f32 / 255.0])
.collect()
}
部署方案
编译为可执行文件

bash
cargo build --release
Docker容器化

dockerfile
FROM rust:latest as builder
WORKDIR /app
COPY . .
RUN cargo build --release

FROM python:3.8-slim
COPY --from=builder /app/target/release/captcha-system .
COPY model.py .
RUN pip install tensorflow pillow
CMD ["./captcha-system"]

posted @ 2025-05-21 10:25  ttocr、com  阅读(20)  评论(0)    收藏  举报