验证码识别系统开发实战(Rust版)
核心组件实现
-
验证码生成模块
rust
use image::{ImageBuffer, Rgb};
use rand::{thread_rng, Rng};
use std::path::Path;
更多内容访问ttocr.com或联系1436423940
pub fn generate_captcha() -> (String, ImageBuffer<Rgb, Vec >) {
let mut rng = thread_rng();
let chars: Vec= "ABCDEFGHJKLMNPQRSTUVWXYZ23456789".chars().collect();
let text: String = (0..4).map(|_| chars[rng.gen_range(0..chars.len())]).collect();let mut img = ImageBuffer::new(120, 40);
// 绘制背景
for pixel in img.pixels_mut() {
*pixel = Rgb([255, 255, 255]);
}// 绘制文字
for (i, c) in text.chars().enumerate() {
let x = 10 + i * 30;
let y = rng.gen_range(10..30);
draw_char(&mut img, x, y, c);
}// 添加干扰线
for _ in 0..3 {
let x1 = rng.gen_range(0..120);
let y1 = rng.gen_range(0..40);
let x2 = rng.gen_range(0..120);
let y2 = rng.gen_range(0..40);
draw_line(&mut img, x1, y1, x2, y2);
}(text, img)
}
fn draw_char(img: &mut ImageBuffer<Rgb
// 字符绘制实现
// ...
}
2. 深度学习模型接口(Python)
python
model.py
import tensorflow as tf
import numpy as np
class CaptchaModel:
def init(self):
self.model = self.build_model()
def build_model(self):
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu',
input_shape=(40, 120, 1)),
tf.keras.layers.MaxPooling2D((2,2)),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(32*4, activation='softmax'),
tf.keras.layers.Reshape((4, 32))
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
return model
def predict_image(self, img_path):
img = tf.io.read_file(img_path)
img = tf.image.decode_png(img, channels=1)
img = tf.image.resize(img, [40, 120])
img = tf.expand_dims(img/255.0, axis=0)
pred = self.model.predict(img)
chars = "ABCDEFGHJKLMNPQRSTUVWXYZ23456789"
return ''.join([chars[np.argmax(p)] for p in pred[0]])
- Rust调用Python模型
rust
use std::process::Command;
pub fn predict_captcha(img_path: &str) -> String {
let output = Command::new("python")
.arg("model.py")
.arg(img_path)
.output()
.expect("Failed to execute Python script");
String::from_utf8_lossy(&output.stdout).trim().to_string()
}
性能优化技巧
并发处理
rust
use rayon::prelude:😗;
fn batch_generate(count: usize) -> Vec<(String, ImageBuffer<Rgb
(0..count).into_par_iter()
.map(|_| generate_captcha())
.collect()
}
内存优化
rust
pub fn preprocess_image(img: &ImageBuffer<Rgb
img.pixels()
.flat_map(|p| [p[0] as f32 / 255.0])
.collect()
}
部署方案
编译为可执行文件
bash
cargo build --release
Docker容器化
dockerfile
FROM rust:latest as builder
WORKDIR /app
COPY . .
RUN cargo build --release
FROM python:3.8-slim
COPY --from=builder /app/target/release/captcha-system .
COPY model.py .
RUN pip install tensorflow pillow
CMD ["./captcha-system"]
浙公网安备 33010602011771号