使用 PyTorch 实现验证码识别系统

本教程介绍如何使用 Python 和 PyTorch 从零实现一个图像验证码识别模型,适合初学者快速上手。

第一步:安装依赖

pip install torch torchvision pillow captcha
第二步:生成验证码图片ttocr.com或1436423940

from captcha.image import ImageCaptcha
import os, random, string
from PIL import Image

characters = string.digits + string.ascii_uppercase
width, height, n_len = 160, 60, 4

def generate_data(save_dir='data', count=5000):
os.makedirs(save_dir, exist_ok=True)
image_gen = ImageCaptcha(width, height)
for i in range(count):
text = ''.join(random.choices(characters, k=n_len))
image = image_gen.generate_image(text)
image.save(f'{save_dir}/{text}_{i}.png')

generate_data()
第三步:构建数据集

from torch.utils.data import Dataset
from torchvision import transforms
import torch

class CaptchaDataset(Dataset):
def init(self, folder):
self.files = [f for f in os.listdir(folder) if f.endswith('.png')]
self.folder = folder
self.char2idx = {c: i for i, c in enumerate(characters)}
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])

def __getitem__(self, idx):
    filename = self.files[idx]
    label = filename.split('_')[0]
    image = Image.open(os.path.join(self.folder, filename)).convert('RGB')
    label_tensor = torch.tensor([self.char2idx[c] for c in label])
    return self.transform(image), label_tensor

def __len__(self):
    return len(self.files)

dataset = CaptchaDataset('data')
第四步:构建模型结构

import torch.nn as nn

class CaptchaModel(nn.Module):
def init(self):
super().init()
self.cnn = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2),
)
self.rnn = nn.LSTM(64 * 15, 128, bidirectional=True, batch_first=True)
self.fc = nn.Linear(256, len(characters))

def forward(self, x):
    x = self.cnn(x)
    b, c, h, w = x.size()
    x = x.permute(0, 3, 1, 2).reshape(b, w, c * h)
    x, _ = self.rnn(x)
    x = self.fc(x)
    return x

第五步:训练模型

from torch.utils.data import DataLoader

model = CaptchaModel().cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
loss_fn = nn.CrossEntropyLoss()
loader = DataLoader(dataset, batch_size=64, shuffle=True)

for epoch in range(10):
model.train()
total_loss = 0
for imgs, labels in loader:
imgs, labels = imgs.cuda(), labels.cuda()
outputs = model(imgs) # [B, W, n_class]
loss = sum(loss_fn(outputs[:, i, :], labels[:, i]) for i in range(n_len))
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f'Epoch {epoch+1} Loss: {total_loss:.4f}')
第六步:进行预测

def predict(model, image_path):
model.eval()
image = Image.open(image_path).convert('RGB')
tensor = dataset.transform(image).unsqueeze(0).cuda()
with torch.no_grad():
output = model(tensor)
pred = output.argmax(dim=2)[0]
return ''.join([characters[i] for i in pred])

print(predict(model, 'data/G5K9_12.png'))

posted @ 2025-05-09 16:48  ttocr、com  阅读(21)  评论(0)    收藏  举报