一、单例(Singleton)模式的定义:指一个类只有一个实例,且该类能自行创建这个实例的一种模式。例如,Windows 中只能打开一个任务管理器,这样可以避免因打开多个任务管理器窗口而造成内存资源的浪费,或出现各个窗口显示内容的不一致等错误。
在计算机系统中,还有 Windows 的回收站、操作系统中的文件系统、多线程中的线程池、显卡的驱动程序对象、打印机的后台处理服务、应用程序的日志对象、数据库的连接池、网站的计数器、Web 应用的配置对象、应用程序中的对话框、系统中的缓存等常常被设计成单例。
J2EE 标准中的 ServletContext 和 ServletContextConfig、Spring 框架应用中的 ApplicationContext、数据库中的连接池等也都是单例模式。
单例模式的优点:
单例模式可以保证内存里只有一个实例,减少了内存的开销。
可以避免对资源的多重占用。
单例模式设置全局访问点,可以优化和共享资源的访问。
单例模式的缺点:
单例模式一般没有接口,扩展困难。如果要扩展,则除了修改原来的代码,没有第二种途径,违背开闭原则。
在并发测试中,单例模式不利于代码调试。在调试过程中,如果单例中的代码没有执行完,也不能模拟生成一个新的对象。
单例模式的功能代码通常写在一个类中,如果功能设计不合理,则很容易违背单一职责原则。
对于 Java 来说,单例模式可以保证在一个 JVM 中只存在单一实例。单例模式的应用场景主要有以下几个方面。
需要频繁创建的一些类,使用单例可以降低系统的内存压力,减少 GC。
某类只要求生成一个对象的时候,如一个班中的班长、每个人的身份证号等。
某些类创建实例时占用资源较多,或实例化耗时较长,且经常使用。
某类需要频繁实例化,而创建的对象又频繁被销毁的时候,如多线程的线程池、网络连接池等。
频繁访问数据库或文件的对象。
对于一些控制硬件级别的操作,或者从系统上来讲应当是单一控制逻辑的操作,如果有多个实例,则系统会完全乱套。
当对象需要被共享的场合。由于单例模式只允许创建一个对象,共享该对象可以节省内存,并加快对象访问速度。如 Web 中的配置对象、数据库的连接池等。
懒汉式
public class LazySingleton {
private static volatile LazySingleton instance = null; //保证 instance 在所有线程中同步
private LazySingleton() {
} //private 避免类在外部被实例化
public static synchronized LazySingleton getInstance() {
//getInstance 方法前加同步
if (instance == null) {
instance = new LazySingleton();
}
return instance;
}
}
饿汉式
public class HungrySingleton {
private static final HungrySingleton instance = new HungrySingleton();
private HungrySingleton() {
}
public static HungrySingleton getInstance() {
return instance;
}
}
饿汉式天生就是线程安全的,可以直接用于多线程而不会出现问题,
懒汉式本身是非线程安全的,为了实现线程安全有几种写法。
饿汉式在类创建的同时就实例化一个静态对象出来,不管之后会不会使用这个单例,都会占据一定的内存,但是相应的,在第一次调用时速度也会更快,因为其资源已经初始化完成。
而懒汉式顾名思义,会延迟加载,在第一次使用该单例的时候才会实例化对象出来,第一次调用时要做初始化,如果要做的工作比较多,性能上会有些延迟,之后就和饿汉式一样了。
二、原型(Prototype)模式的定义如下:用一个已经创建的实例作为原型,通过复制该原型对象来创建一个和原型相同或相似的新对象
原型模式的优点:
Java 自带的原型模式基于内存二进制流的复制,在性能上比直接 new 一个对象更加优良。
可以使用深克隆方式保存对象的状态,使用原型模式将对象复制一份,并将其状态保存起来,简化了创建对象的过程,以便在需要的时候使用(例如恢复到历史某一状态),可辅助实现撤销操作。
原型模式的缺点:
需要为每一个类都配置一个 clone 方法
clone 方法位于类的内部,当对已有类进行改造的时候,需要修改代码,违背了开闭原则。
当实现深克隆时,需要编写较为复杂的代码,而且当对象之间存在多重嵌套引用时,为了实现深克隆,每一层对象对应的类都必须支持深克隆,实现起来会比较麻烦。因此,深克隆、浅克隆需要运用得当。
//具体原型类
class Realizetype implements Cloneable {
Realizetype() {
System.out.println("具体原型创建成功!");
}
public Object clone() throws CloneNotSupportedException {
System.out.println("具体原型复制成功!");
return (Realizetype) super.clone();
}
}
//原型模式的测试类
public class PrototypeTest {
public static void main(String[] args) throws CloneNotSupportedException {
Realizetype obj1 = new Realizetype();
Realizetype obj2 = (Realizetype) obj1.clone();
System.out.println("obj1==obj2?" + (obj1 == obj2));
}
}
浅克隆仅仅复制所考虑的对象,不会复制它所引用的成员对象。
在深克隆中,除了对象本身被复制外,对象包含的引用也被复制,也就是其中的成员对象也被复制。
public Customer clone(){
Customer cus=null;
try {
cus=(Customer) super.clone();
cus.address=(Address) address.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();
}
return cus;
}
Java序列化将对象写入对象流中,实现深克隆
public class Customer implements Serializable{
private Address address;
private String name;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Address getAddress() {
return address;
}
public void setAddress(Address address) {
this.address = address;
}
public Customer(String name, Address address) {
super();
this.name = name;
this.address = address;
}
@Override
public String toString() {
return "Customer [address=" + address + ", name=" + name + "]";
}
public Object deepClone() throws Exception {
//将对象写入流中
ByteArrayOutputStream bao=new ByteArrayOutputStream();
ObjectOutputStream oos=new ObjectOutputStream(bao);
oos.writeObject(this);
//将对象从流中取出
ByteArrayInputStream bis=new ByteArrayInputStream(bao.toByteArray());
ObjectInputStream ois=new ObjectInputStream(bis);
return(ois.readObject());
}
}
浙公网安备 33010602011771号