abc066d <组合>
// https://atcoder.jp/contests/abc066/tasks/arc077_b
// <组合数>
// 总组合数减去重复部分
// 对于本题求组合数方法:
// 1. 递推, 如本代码
// 2. 预处理 1e5 内的阶乘和逆元 (递推求得) (见下面第二份代码)
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
using LL = long long;
const int N = 1e5 + 10, mod = 1e9 + 7;
int a[N];
int qpow(int a, int k)
{
int res = 1;
while (k)
{
if (k & 1) res = 1ll * res * a % mod;
k >>= 1;
a = 1ll * a * a % mod;
}
return res;
}
int C(int n, int m)
{
if (m < 0 || m > n) return 0;
int res = 1;
for (int i = 1, j = n; i <= m; i ++, j --)
{
res = 1ll * res * j % mod;
res = 1ll * res * qpow(i, mod-2) % mod;
}
return res;
}
void solv()
{
int n;
cin >> n;
int l, r;
for (int i = 1, t; i <= n+1; i ++)
{
cin >> t;
if (a[t]) // 记录两个相同数字的位置
{
l = a[t];
r = i;
}
a[t] = i;
}
cout << n << endl;
int t1, t2;
for (int i = 2; i <= n+1; i ++)
{
if (i==2)
{
t1 = C(n+1, i);
t2 = C(n+1-(r-l+1), i-1);
}
else // 采用递推计算组合数, 直接计算超时
{
t1 = 1ll * t1 * (n+1-i+1) % mod * qpow(i, mod-2) % mod;
t2 = 1ll * t2 * (n+1-(r-l+1) - (i-1) + 1) % mod * qpow(i-1, mod - 2) % mod;
}
int ans = (1ll*t1 - t2 + mod) % mod;
cout << ans << endl;
}
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
int T = 1;
// cin >> T;
while (T --)
{
solv();
}
return 0;
}
递推预处理fact inv, 计算组合数
const int mod = 1e9 + 7;
const int maxn = 1e5 + 5;
int fact[maxn];
int inv[maxn];
int qpow(int a, int k)
{
int res = 1;
while (k)
{
if (k & 1) res = 1ll * res * a % mod;
k >>= 1;
a = 1ll * a * a % mod;
}
return res;
}
void pre(int n)
{
fact[0] = 1;
for (int i = 1; i <= n; ++i)
fact[i] = 1LL * fact[i - 1] * i % mod;
inv[n] = qpow(fact[n], mod - 2);
for (int i = n; i >= 0; --i)
inv[i - 1] = 1LL * inv[i] * i % mod;
}
int C(int n, int k) { return n < k ? 0 : 1LL * fact[n] * inv[n - k] % mod * inv[k] % mod; }
本文来自博客园,作者:O2iginal,转载请注明原文链接:https://www.cnblogs.com/o2iginal/p/17540107.html