# Seq2seq
# 进行机器翻译
import collections
import math
import os
import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
class Seq2SeqEncoder(d2l.Encoder):
def __init__(self, vocab_size, embed_size, num_hidden, num_layers,
dropout=0, **kwargs):
super(Seq2SeqEncoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
# 将文本数据转化成标记关系
# 是为了将离散的词汇信息表示为连续的、连贯的向量空间中的点,以便模型能够更好地理解单词之间的语义关系。
self.rnn = nn.GRU(embed_size, num_hidden, num_layers, dropout=dropout)
# 创造一个rnn层负责进行编码
def forward(self, x, *args):
x = self.embedding(x)
# 创建一个嵌入层,用于将输入的整数标记(词汇表中的单词索引)转换为密集的词嵌入。这是将词汇信息转化为连续的向量表示的一种常用方法。
# 类似于one_hot
x = x.permute(1, 0, 2)
# 对x进行维度置换,将批量大小放在第二维,序列长度放在第一维。这是因为RNN层通常期望输入的维度顺序是(序列长度, 批量大小, 特征维度)。
output, state = self.rnn(x)
# 将处理后的输入x传递给GRU层进行编码。output包含了每个时间步的隐藏状态,state包含了GRU最后一个时间步的隐藏状态。
return output, state
encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hidden=16,
num_layers=2)
encoder.eval() # 让dropout=0
x = torch.zeros((4, 7), dtype=torch.long)
# batch_size为4,序列长度为7的一个矩阵
output, state = encoder(x)
print(output.shape)
# 在编码器中将x矩阵转置,序列长度与批量大小转置,方便进行rnn处理
print(state.shape)
# state中的2是层数,每一层在最后时刻的输出,4为批量大小,16为num_hidden
class Seq2SeqDecoder(d2l.Decoder):
def __init__(self, vocab_size, embed_size, num_hidden, num_layers,
dropout=0, **kwargs):
super(Seq2SeqDecoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.GRU(embed_size + num_hidden, num_hidden, num_layers,
dropout=dropout)
# 创建了一个GRU层,用于对输入序列进行解码。GRU的输入维度是 embed_size + num_hidden,
# 其中 embed_size 是嵌入层输出的维度,num_hidden 是上一个时间步的隐藏状态的维度。这个GRU层有 num_layers 层,用于对序列进行建模。
self.dense = nn.Linear(num_hidden, vocab_size)
# 创建了一个全连接层,用于将GRU的输出转换为词汇表大小的向量,以便生成模型的输出。这一层的输出维度等于词汇表的大小
# 输出函数
def init_state(self, enc_outputs, *args):
return enc_outputs[1]
def forward(self, x, state):
x = self.embedding(x).permute(1, 0, 2)
context = state[-1].repeat(x.shape[0], 1, 1)
# 广播context,使其具有与X相同的num_steps
# 将编码器的最后一个隐藏状态 state[-1] 广播到与 x 相同的时间步数,用于上下文信息。
x_and_context = torch.cat((x, context), 2)
output, state = self.rnn(x_and_context, state)
# 将连接后的输入和隐藏状态传递给GRU层,计算解码器的输出和新的隐藏状态。
output = self.dense(output).permute(1, 0, 2)
# 通过全连接层将GRU的输出转换为模型的最终输出,然后进行维度置换以匹配预期的输出形状。
# output的形状:(batch_size,num_steps,vocab_size)
# state的形状:(num_layers,batch_size,num_hidden)
return output, state
decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8, num_hidden=16,
num_layers=2)
decoder.eval()
state = decoder.init_state(encoder(x))
# 对编码器的最后状态进行初始化
output, state = decoder(x, state)
# 获取输出和状态
print(output.shape, state.shape)
# ""在序列中屏蔽不相关的项"""
def sequence_mask(x, valid_len, value=0):
max_len = x.size(1)
mask = torch.arange((max_len), dtype=torch.float32,
device=x.device)[None, :] < valid_len[:, None]
# 定义一个筛选的函数,只保留从 0 到valid长度的值,其余的全部赋值成value
x[~mask] = value
return x
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(sequence_mask(x, torch.tensor([1, 2])))
# 作用是对于一维只保留前一个,二维只保留前两个,根据valid的长度来实现
# 通过扩展softmax交叉熵函数来屏蔽不相关
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
"""带遮蔽的softmax交叉熵损失函数"""
# pred的形状:(batch_size,num_steps,vocab_size)
# label的形状:(batch_size,num_steps)
# valid_len的形状:(batch_size,)
def forward(self, pred, label, valid_len):
weights = torch.ones_like(label)
weights = sequence_mask(weights, valid_len)
self.reduction = 'none'
unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(
pred.permute(0, 2, 1), label)
weighted_loss = (unweighted_loss * weights).mean(dim=1)
return weighted_loss
# 训练
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):
def xavier_init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
if type(m) == nn.GRU:
for param in m._flat_weights_names:
if "weight" in param:
nn.init.xavier_uniform_(m._parameters[param])
net.apply(xavier_init_weights)
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
loss = MaskedSoftmaxCELoss()
net.train()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[10, num_epochs])
# 构建图像
for epoch in range(num_epochs):
timer = d2l.Timer()
metric = d2l.Accumulator(2) # 训练损失总和,词元数量
for batch in data_iter:
optimizer.zero_grad()
x, x_valid_len, y, y_valid_len = [x.to(device) for x in batch]
bos = torch.tensor([tgt_vocab['<bos>']] * y.shape[0],
device=device).reshape(-1, 1)
dec_input = torch.cat([bos, y[:, :-1]], 1)
y_hat, _ = net(x, dec_input, x_valid_len)
l = loss(y_hat, y, y_valid_len)
l.sum().backward() # 损失函数的标量进行“反向传播”
d2l.grad_clipping(net, 1)
num_tokens = y_valid_len.sum()
optimizer.step()
with torch.no_grad():
metric.add(l.sum(), num_tokens)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, (metric[0] / metric[1],))
print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} '
f'tokens/sec on {str(device)}')
plt.show()
embed_size, num_hidden, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 300, d2l.try_gpu()
# def read_data_nmt():
# """载入⼊“英语-法语”数据集。"""
# data_dir = d2l.download_extract('fra-eng')
# with open(os.path.join(data_dir, 'fra.txt'), 'r',encoding='UTF-8') as f:
# return f.read()
# raw_text = read_data_nmt()
train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = Seq2SeqEncoder(len(src_vocab), embed_size, num_hidden, num_layers,
dropout)
decoder = Seq2SeqDecoder(len(tgt_vocab), embed_size, num_hidden, num_layers,
dropout)
net = d2l.EncoderDecoder(encoder, decoder)
train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
# 预测
def predict_seq2seq(net, src_sentence, src_vocab, tgt_vocab, num_steps,
device, save_attention_weights=False):
"""序列到序列模型的预测"""
# 在预测时将net设置为评估模式
net.eval()
src_tokens = src_vocab[src_sentence.lower().split(' ')] + [src_vocab['<eos>']]
enc_valid_len = torch.tensor([len(src_tokens)], device=device)
src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])
# 添加批量轴
enc_x = torch.unsqueeze(
torch.tensor(src_tokens, dtype=torch.long, device=device), dim=0)
# enc_X是把句子中的 之前添加的pad和bos删除
enc_outputs = net.encoder(enc_x, enc_valid_len)
dec_state = net.decoder.init_state(enc_outputs, enc_valid_len)
# 拿出编码器的输出和最后状态
# 添加批量轴
dec_x = torch.unsqueeze(torch.tensor(
[tgt_vocab['<bos>']], dtype=torch.long, device=device), dim=0)
# 没有bos的序列句子
output_seq, attention_weight_seq = [], []
for _ in range(num_steps):
# 取出 输出和状态,作为下一步的输入 和 更新状态
y, dec_state = net.decoder(dec_x, dec_state)
dec_x = y.argmax(dim=2) # 出去输出,即最大预测概率
pred = dec_x.squeeze(dim=0).type(torch.int32).item()
# 保存注意力权重(稍后讨论)
if save_attention_weights:
attention_weight_seq.append(net.decoder.attention_weights)
# 一旦序列结束词元被预测,输出序列的生成就完成了
if pred == tgt_vocab['<eos>']:
break
output_seq.append(pred)
return ' '.join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq
def bleu(pred_seq, label_seq, k): # @save
"""计算BLEU"""
pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ')
len_pred, len_label = len(pred_tokens), len(label_tokens)
score = math.exp(min(0, 1 - len_label / len_pred))
for n in range(1, k + 1):
num_matches, label_subs = 0, collections.defaultdict(int)
for i in range(len_label - n + 1):
label_subs[' '.join(label_tokens[i: i + n])] += 1
for i in range(len_pred - n + 1):
if label_subs[' '.join(pred_tokens[i: i + n])] > 0:
num_matches += 1
label_subs[' '.join(pred_tokens[i: i + n])] -= 1
score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
return score
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
translation, attention_weight_seq = predict_seq2seq(
net, eng, src_vocab, tgt_vocab, num_steps, device)
print(f'{eng} => {translation}, bleu {bleu(translation, fra, k=2):.3f}')