证明内容:现有一三角形,定义其任意两条边的中点所连线段为其中位线,试证明其中位线平行于第三边且等于第三边的一半
证明:

\[现有△ABC,A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)
\]
\[∴线段AB中点D(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}),线段BC中点E(\frac{x_1+x_3}{2},\frac{y_1+y_3}{2})
\]
\[\begin{aligned}
DE &= \sqrt{(\frac{x_1+x_2}{2}-\frac{x_1+x_3}{2})^2+(\frac{y_1+y_2}{2}-\frac{y_1+y_3}{2})^2}\\
&=\sqrt{(\frac{x_1-x_3}{2})^2+(\frac{y_1-y_3}{2})^2}\\
&=\sqrt{\frac{(x_1-x_3)^2}{4}+\frac{(y_1-y_3)^2}{4}}\\
&=\sqrt{\frac{(x_1-x_3)^2+(y_1-y_3)^2}{4}}\\
&=\frac{\sqrt{(x_1-x_3)^2+(y_1-y_3)^2}}{2}
\end{aligned}\]
\[∵B(x_2,y_2),C(x_3,y_3)
\]
\[∴BC=\sqrt{(x_1-x_3)^2+(y_1-y_3)^2}
\]
\[∴DE=\frac{1}{2}BC
\]
\[令直线DE的解析式为y_1=k_1x+b_1,将D,E点坐标代入得:
\]
\[\begin{cases}
\frac{x_1+x_2}{2}k_1+b_1=\frac{y_1+y_2}{2}①\\
\frac{x_1+x_3}{2}k_1+b_1=\frac{y_1+y_3}{2}②
\end{cases}\]
\[①式-②式,得:
\]
\[\frac{x_2-x_3}{2}k_1=\frac{y_2-y_3}{2}
\]
\[即(x_2-x_3)k_1=y_2-y_3
\]
\[令直线AB的解析式为y_2=k_2x+b_2,将A,B点坐标代入得:
\]
\[\begin{cases}
x_2k_2+b_2=y_2③\\
x_3k_2+b_2=y_3④
\end{cases}\]
\[③式-④式,得:
\]
\[(x_2-x_3)k_2=y_2-y_3
\]
\[∵(x_2-x_3)k_1=y_2-y_3
\]
\[∴k_1=k_2
\]
\[∴DE\parallel AB
\]
\[∴证毕
\]
浙公网安备 33010602011771号