【区间DP】——poj1141——括号匹配并输出括号序列
Brackets Sequence
| Time Limit: 1000MS | Memory Limit: 65536K | |||
| Total Submissions: 29861 | Accepted: 8542 | Special Judge | ||
Description
Let us define a regular brackets sequence in the following way:
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.
Output
Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.
Sample Input
([(]
Sample Output
()[()]
(转)
题意:
给出一串括号,要你补上最少的括号使这一串括号都匹配........
思路:
dp[i][j]表示从区间i到区间j使其所以括号匹配需要补上的最少括号数,
那么当出现一个括号时,
首先考虑它不与后面匹配的情况,那么需要加一个相对应的括号,让之匹配dp[i][j]=dp[i+1][j]+1;
然后再考虑,若是后面有括号可以让它匹配的情况,
那么假设i<k<=j,当s[i]=='('&&s[k]==')'的时候,
考虑动态转移,dp[i][j]=dp[i+1][k-1]+dp[k][j]-1
为什么这个动态方程减1呢,因为将与之匹配的那个括号重新计算了一次,
当s[k]==')'的时候,在计算dp[k][k]的时候,状态转移已经把这个括号自动匹配了一次,所以要减去这次匹配的........
然后就是记录路径了,
开一个二维数组a[i][j],当a[i][j]==-1的时候,表示dp[i][j]这个状态是从dp[i+1][j]推导过来的,
当a[i][j]>0的时候,表示dp[i][j]是从dp[i+1][a[i][j]-1]以及dp[k][j]这两个状态推导过来的,
那么注意到当a[i][j]!=-1的时候,就正好表示s[i]与s[a[i][j]]匹配,说明在第i个括号这个地方只需要输出它自己本身,
其他的,若是a[i][j]==-1的,都需要输出它自身以及与它自身匹配的括号.........
代码如下:
#include<iostream> #include<stdio.h> #include<string.h> using namespace std; int dp[300][300];//dp最小需要的括号数 int a[300][300];//a[i][j]表示记录i~j的断点(a->b映射) int b[300];//标记找到的已经匹配好的位置 char s[300];//字符串 //递归处理路径 void print(int i,int j) { if(i>=j)return; if(a[i][j]==-1) print(i+1,j); if(a[i][j]>0) { b[i]=1; b[a[i][j]]=1; print(i+1,a[i][j]-1); print(a[i][j],j); } } int main() { while(gets(s+1)>0) //这里注意,有直接输入\n的情况......... { s[0]=2; memset(dp,0,sizeof(dp)); memset(a,-1,sizeof(a)); memset(b,0,sizeof(b)); int len=strlen(s); len--;//保持下标统一 for(int i=1;i<=len;i++) dp[i][i]=1; for(int i=len-1;i>=1;i--) { for(int j=i+1;j<=len;j++) { dp[i][j]=dp[i+1][j]+1;//只考虑一端的情况,另一边对称 a[i][j]=-1; for(int k=i+1;k<=j;k++) { if((s[i]=='('&&s[k]==')')||(s[i]=='['&&s[k]==']')) { if(dp[i][j]>dp[i+1][k-1]+dp[k][j]-1)//分段可以得到更小结果 { dp[i][j]=dp[i+1][k-1]+dp[k][j]-1; a[i][j]=k; } } } } } print(1,len); for(int i=1;i<=len;i++) { if(b[i]==1) printf("%c",s[i]); else { if(s[i]=='('||s[i]==')') printf("()"); else printf("[]"); } } printf("\n"); } return 0; }

浙公网安备 33010602011771号