ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 \cdot 36=2⋅3 is square-free, but 12 = 2^2 \cdot 312=22⋅3 is not, because 2^222 is a square number. Some integers could be decomposed into product of two square-free integers, there may be more than one decomposition ways. For example, 6 = 1\cdot 6=6 \cdot 1=2\cdot 3=3\cdot 2, n=ab6=1⋅6=6⋅1=2⋅3=3⋅2,n=ab and n=ban=ba are considered different if a \not = ba̸=b. f(n)f(n) is the number of decomposition ways that n=abn=ab such that aa and bb are square-free integers. The problem is calculating \sum_{i = 1}^nf(i)∑i=1nf(i).
Input
The first line contains an integer T(T\le 20)T(T≤20), denoting the number of test cases.
For each test case, there first line has a integer n(n \le 2\cdot 10^7)n(n≤2⋅107).
Output
For each test case, print the answer \sum_{i = 1}^n f(i)∑i=1nf(i).
Hint
\sum_{i = 1}^8 f(i)=f(1)+ \cdots +f(8)∑i=18f(i)=f(1)+⋯+f(8)
=1+2+2+1+2+4+2+0=14=1+2+2+1+2+4+2+0=14.
样例输入
2 5 8
样例输出
8 14
题目来源
这题显示用sum【i】表示第i及i前面的非平方因子的数量,f【cnt】 用来存储非平方因子i,
主要是这部分:
for(int i = 0; i < cnt && f[i] <= n; i ++) { int res = (int)(n/f[i]); ans += sum[res]; }
贴上代码:
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; #define ll long long const int N=2e7+10; int vis[N],f[N],sum[N]; int cnt; void init() { memset(vis,1,sizeof(vis)); for(int i=2;i*i<N;i++) for(int j=i*i;j<N;j+=i*i) vis[j]=0; for(int i=1;i<N;i++) { if(vis[i]) { sum[i]=sum[i-1]+1; f[cnt++]=i; } else sum[i]=sum[i-1]; } } int main() { int n,t; cnt=1; init(); scanf("%d",&t); while(t--) { scanf("%d",&n); ll ans=0; for(int i=1;i<=cnt&&f[i]<=n;i++) { int res=(int)(n/f[i]); ans+=sum[res]; } printf("%lld\n",ans); } return 0; }
浙公网安备 33010602011771号