Primitive Primes(多项式乘法得结构)

https://codeforces.com/contest/1316/problem/C

题意:给出两个多项式相乘得到h(x),问该多项式得哪一项不能被素数p整除。

解法:假设a多项式第一个不能被p整除为ai , b多项式第一个不能被p整除为bj

ci+j = (a0 * bi+j + a1* bi+j-1.......) + ai*bj + (ai-1*bj+1 + ...... + ai+j*b0

因为是第一个不能p整除得所以之前a0-ai-1,b0-bj-1都能被p整除即括号内的都能被

p整除,ai*bj不能被p整除,所以整个式子不能被p整除。

#include<bits/stdc++.h>
typedef long long ll ;
#define int ll
#define mod 1000000007
#define gcd __gcd
#define rep(i , j , n) for(int i = j ; i <= n ; i++)
#define red(i , n , j)  for(int i = n ; i >= j ; i--)
#define ME(x , y) memset(x , y , sizeof(x))
//ll lcm(ll a , ll b){return a*b/gcd(a,b);}
//ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;}
//int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;}
//const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len}
#define INF  0x3f3f3f3f
#define PI acos(-1)
#define pii pair<int,int>
#define fi first
#define se second
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define cin(x) scanf("%lld" , &x);
using namespace std;
const int maxn = 1e6+9;
int a[maxn] , b[maxn];

void solve(){
    int n , m , p ;
    cin >> n >> m >> p;
    int index = -1 , indey = -1 ;
    rep(i , 0 , n-1){
        scanf("%d" , &a[i]);
        if(index == -1 && a[i] % p){
            index = i ;
        }
    }
    rep(i , 0 , m-1){
        scanf("%d" , &b[i]);
        if(indey == -1 && b[i] % p){
            indey = i ;
        }
    }
    cout << index + indey << endl;


}

signed main()
{
    //ios::sync_with_stdio(false);
    //cin.tie(0); cout.tie(0);
    //int t ;
    //cin(t);
    //while(t--){
        solve();
    //}
}

 

posted @ 2020-03-05 15:46  无名菜鸟1  阅读(257)  评论(0)    收藏  举报