概率知识补充--高斯分布1
概率知识补充--高斯分布1
数据
N个样本独立同分布
\[X = (x_{1},x_{2},\cdots,x_{N})^{T} =
\left(\begin{array}{c}x_{1}^{\top} \\ x_{0}^{\top} \\ \vdots \\ x_{N}^{\prime}\end{array}\right)_{N \times \beta}
\]
\[x_{i} \in \mathbb{R}^{p}
\]
\[x_{i} \sim N(\mu,\sigma)
\]
\[\theta = (\mu,\sigma)
\]
最大似然估计(MLE)
\[\theta_{MLE} = \arg \max_{\theta} P(X|\theta)
\]
为了方便证明,数据纬度为一维
令
\[p = 1 ,\ \theta=(\mu, \sigma^{2})
\]
因为是数据独立同分布的,所以
\[\log P(x|\theta) = \log \prod_{i=1}^{N} p(x_{i}|\theta) \\
= \sum_{i=1}^{N} \log p(x_{i}|\theta) \tag{1-1}
\]
因为 样本是正态分布的 一个维度的
\[p(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp (-\frac{(x-\mu)^{2}}{2 \sigma^{2}}) \tag{1-2}
\]
另外多个维度的高斯分布是下面这样的
\[p(x) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}}\exp(-\frac{1}{2}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu))
\]
将\((1-2)\)式带入\((1-1)\)中,并展开
\[\log P(x|\theta) = \log \prod_{i=1}^{N} p(x_{i}|\theta) \\
= \sum_{i=1}^{N} \log p(x_{i}|\theta) \\
= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2 \pi} \sigma} \exp (-\frac{(x-\mu)^{2}}{2 \sigma^{2}}) \\
= \sum_{i=1}^{N}(\log \frac{1}{\sqrt{2 \pi}}+\log \frac{1}{\sigma} - \frac{(x-\mu)^{2}}{2 \sigma^{2}})
\]
求 \(\mu_{MLE}\),去掉和 \(\mu\)的项
\[\mu_{MLE} = \arg \max_{\mu} \sum_{i=1}^{N} \log P(x_{i}|\theta) \\
= \arg \max_{\mu} -\sum_{i=1}^{N} \frac{(x_{i}-\mu)^{2}}{2 \sigma^{2}} \\
= \arg \min_{\mu} \sum_{i=1}^{N} \frac{(x_{i}-\mu)^{2}}{2 \sigma^{2}} \\
= \arg \min_{\mu} \sum_{i=1}^{N}(x_{i}-\mu)^{2}
\]
对 \(\mu\)求导
\[\frac{\partial}{\partial \mu} \sum_{i=1}^{N}(x_{i}-\mu)^{2} =2 \sum_{i=1}^{N} (x_{i} - \mu) = 0 \\
\sum_{i=1}^{N} (x_{i} - \mu) = 0 \\
\sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N}\mu =0 \\
\mu_MLE = \frac{1}{N}\sum_{i=1}^{N} x_{i}
\]
同样的方法求 \(\sigma_{MLE}\)
\[\sigma_{MLE} = \arg \max_{\sigma} \sum_{i=1}^{N} - \log \sigma - \frac{1}{2 \sigma^{2}}(x_{i}-\mu)^2
\]
对 \(\sigma\)求导
\[\frac{\partial}{\partial \sigma} \sum_{i=1}^{N} - \log \sigma - \frac{1}{2 \sigma^{2}}(x_{i}-\mu)^2 = \sum_{i=1}^{N} - \frac{1}{\sigma}-\frac{(x_{i}-\mu)^{2}}{2} (-2) \sigma^{-3} = 0\\
\sum_{i=1}^{N} \sigma^{2}-(x_{i}-\mu)^{2}=0 \\
\sigma^{2}_{MLE} = \frac{1}{N}\sum_{i=1}(x_{i}-\mu)^{2} \\
\]
其中 \(\sigma^{2}_{MLE}\) 为有偏估计
\[\mathbb{E}\left[\sigma^{2}_{MLE}\right] = \frac{N-1}{N} \sigma^{2}
\]
无偏估计
\[\hat{\sigma} = \frac{1}{N-1} \sum_{i=1}^{N}(x_{i}-\mu_{MLE})^{2}
\]
浙公网安备 33010602011771号