HDU 6102 - GCDispower | 2017 Multi-University Training Contest 6
个人感觉题解的复杂度很玄,参不透,有没有大佬讲解一下- -
/*
HDU 6102 - GCDispower [ 数论,树状数组] | 2017 Multi-University Training Contest 6
题意:
给定排列 a[N], M 组 L,R
求解 ∑ [ L <= i < j < k <= R ] [ GCD(a[i], a[j]) == a[k] ] * a[k]
限制:N, M <= 1e5
分析:
数论角度一般考虑枚举 k,由于是区间询问,且贡献有可加性,考虑对每个L,将[L, R-1] 推到 [L, R]
故对于每一个R, 枚举 a[R] 倍数 a[i] (i < R)
再对每一个 a[i] , 求得满足 i < j < R && GCD(a[i], a[j]) == a[R] 的个数
即 GCD(a[i]/a[R], a[j]/a[R]) == 1 的个数
此时对于 L ∈ [1,i-1] 的区间,贡献 = 所得个数 * a[R] , 这部分用区间更新可以完成
求 GCD(a[i]/a[R], a[j]/a[R]) == 1 的 j 的个数,用容斥原理
a[j]是a[R]的倍数的总个数 - a[j]与a[i]不互质的个数
= a[j]是a[R]的倍数的总个数 - a[j] 是 a[i] 的 1个质因子之积的倍数的个数
+ a[j] 是 a[i] 的 2个质因子之积的倍数的个数
...
+ (-1)^k * a[j] 是 a[i] 的 k个质因子之积的倍数的个数
所以预处理每个数所有质因子之积,然后容斥的参数 μ = -1^(k) 可以用莫比乌斯函数
具体处理时,可以维护每个质因子之积的倍数,每处理一个 a[i] , 就将它的每个质因子之积的倍数个数+1
复杂度:
预处理 O(n+n^1.5)
枚举 R 和 a[i] 均摊 O(nlog(n)), 枚举 a[i] 的因子容斥 O(n^0.5)
区间查询,更新 O(log(n))
总复杂度 : O(n + n^1.5 + T * n * log(n)*(n^0.5 + log(n)))
不过由于枚举因子时枚举的是非完全平方数,不足n^0.5,可能优化下来就 n*log(n)^2 了(???)
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 100005;
bool notp[N];
int prime[N], pnum, mu[N];
vector<int> fac[N];
void Mobius() {
memset(notp, 0, sizeof(notp));
mu[1] = 1;
for (int i = 2; i < N; i++) {
if (!notp[i]) prime[++pnum] = i, mu[i] = -1;
for (int j = 1; prime[j]*i < N; j++) {
notp[prime[j]*i] = 1;
if (i%prime[j] == 0) {
mu[prime[j]*i] = 0;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
for (int i = 1; i < N; i++)
for (int j = 1; j*j <= i; j++) {
if (j*j == i && mu[j]) fac[i].push_back(j);
else if (i%j == 0) {
if (mu[j]) fac[i].push_back(j);
if (mu[i/j]) fac[i].push_back(i/j);
}
}
}
int t, n, m, a[N], vis[N];
struct Query {
int l, id;
};
vector<Query> Q[N];
LL ans[N];
LL c[N];
void modify(int x, int num) {
if (x == 0) return;
while (x <= n) c[x] += num, x += x&-x;
}
LL sum(int x){
LL s = 0;
while (x) s += c[x], x -= x&-x;
return s;
}
int cnt[N];
void addCnt(int x) {
for (auto& y : fac[x]) cnt[y]++;
}
void solve(int l, int x, int k)
{
int num = 0;
for (auto& y : fac[x])
num += mu[y] * cnt[y];
modify(1, k*num);
modify(l+1, -k*num);
addCnt(x);
}
vector<int> mul;
bool cmp(int a, int b) {
return a > b;
}
void init() {
memset(vis, 0, sizeof(vis));
memset(cnt, 0, sizeof(cnt));
memset(c, 0, sizeof(c));
for (int i = 0; i < N; i++) Q[i].clear();
}
int main()
{
Mobius();
scanf("%d", &t);
while (t--)
{
init();
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= m; i++)
{
int l, r; scanf("%d%d", &l, &r);
Q[r].push_back(Query{l, i});
}
for (int i = 1; i <= n; i++)
{
mul.clear();
for (int j = 2*a[i]; j <= n; j += a[i])
if (vis[j]) mul.push_back(vis[j]);
sort(mul.begin(), mul.end(), cmp);
for (auto & l : mul) solve(l, a[l]/a[i], a[i]);
for (int j = 0; j <= n/a[i]; j++) cnt[j] = 0;
vis[a[i]] = i;
for (auto& x : Q[i]) ans[x.id] = sum(x.l);
}
for (int i = 1; i <= m; i++) printf("%lld\n", ans[i]);
}
}
我自倾杯,君且随意

浙公网安备 33010602011771号