//雪花飘落特效 //右上角github跳转   

dockerfile

 

 

 

FROM 172.25.203.50:35000/env/release/3.8.1/prophet/app/simple-tensorflow-serving-gpu.tar:pipe-1323-commit-8175a78f-4.2
RUN rm -rf /usr/local/cuda*
RUN apt-get update && apt-get install -y --no-install-recommends \
        build-essential \
        cmake \
        git \
        wget \
        libopencv-dev \
        libsnappy-dev \
        python-dev \
        python-pip \
        tzdata \
        vim
# Install anaconda for python 3.6
RUN wget --quiet https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh -O ~/anaconda.sh && \
    /bin/bash ~/anaconda.sh -b -p /opt/conda && \
    rm ~/anaconda.sh && \
    echo "export PATH=/opt/conda/bin:$PATH" >> ~/.bashrc
# Set timezone
#RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
# Set locale
ENV LANG C.UTF-8 LC_ALL=C.UTF-8
ENV PATH /opt/conda/bin:$PATH
RUN rm -rf /bin/sh && ln -s /bin/bash /bin/sh
RUN source  ~/.bashrc
RUN conda create -y -n python37 python=3.7 && \
    source activate python37 && \
    conda install --quiet --yes \
        ipykernel && \
    python -m ipykernel install --user --name python37 --display-name "Python 37"
ENV CUDA_VERSION 10.2.89
ENV CUDA_PKG_VERSION 10-2=$CUDA_VERSION-1
LABEL com.nvidia.volumes.needed="nvidia_driver"
LABEL com.nvidia.cuda.version="${CUDA_VERSION}"
RUN rm -rf /etc/apt/sources.list.d/*
RUN apt-get install -y --no-install-recommends ca-certificates apt-transport-https gnupg-curl perl && \
    rm -rf /var/lib/apt/lists/* && \
    NVIDIA_GPGKEY_SUM=d1be581509378368edeec8c1eb2958702feedf3bc3d17011adbf24efacce4ab5 && \
    NVIDIA_GPGKEY_FPR=ae09fe4bbd223a84b2ccfce3f60f4b3d7fa2af80 && \
    apt-key adv --fetch-keys https://mirrors.aliyun.com/nvidia-cuda/ubuntu1604/x86_64/7fa2af80.pub && \
    apt-key adv --export --no-emit-version -a $NVIDIA_GPGKEY_FPR | tail -n +5 > cudasign.pub && \
    echo "$NVIDIA_GPGKEY_SUM  cudasign.pub" | sha256sum -c --strict - && rm cudasign.pub && \
    echo "deb https://mirrors.aliyun.com/nvidia-cuda/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
    echo "deb http://docker02.4pd.io/compute/machine-learning/repos/ubuntu1604/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
    apt-get update && apt-get install -y --no-install-recommends \
        cuda-cudart-$CUDA_PKG_VERSION && \
    ln -s cuda-10.2 /usr/local/cuda && \
    echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \
    echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf && \
    apt-get install -y --no-install-recommends --allow-unauthenticated \
    cuda-command-line-tools-10-2 \
    cuda-cublas-10-0 \
    cuda-cufft-10-2 \
    cuda-curand-10-2 \
    cuda-cusolver-10-2 \
    cuda-cusparse-10-2 \
    libcudnn7 \
    libhdf5-serial-dev && apt-get clean && rm -rf /var/lib/apt/lists/* || exit 1
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH /usr/cuda_files:$LD_LIBRARY_PATH

ARG GIT_COMMIT=""
ENV GIT_COMMIT $GIT_COMMIT
CMD ["/launcher.py"]
docker build -t 172.25.203.50:35000/env/release/3.8.1/prophet/app/simple-tensorflow-serving-gpu.tar:pipe-1323-commit-8175a78f-4.5 .

 

posted @ 2020-10-29 10:18  农夫运维  阅读(50)  评论(0)    收藏  举报