multiprocessing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
#
# This module shows how to use arbitrary callables with a subclass of
# `BaseManager`.
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
 
from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy
import operator
 
##
 
class Foo(object):
    def f(self):
        print 'you called Foo.f()'
    def g(self):
        print 'you called Foo.g()'
    def _h(self):
        print 'you called Foo._h()'
 
# A simple generator function
def baz():
    for i in xrange(10):
        yield i*i
 
# Proxy type for generator objects
class GeneratorProxy(BaseProxy):
    _exposed_ = ('next', '__next__')
    def __iter__(self):
        return self
    def next(self):
        return self._callmethod('next')
    def __next__(self):
        return self._callmethod('__next__')
 
# Function to return the operator module
def get_operator_module():
    return operator
 
##
 
class MyManager(BaseManager):
    pass
 
# register the Foo class; make `f()` and `g()` accessible via proxy
MyManager.register('Foo1', Foo)
 
# register the Foo class; make `g()` and `_h()` accessible via proxy
MyManager.register('Foo2', Foo, exposed=('g', '_h'))
 
# register the generator function baz; use `GeneratorProxy` to make proxies
MyManager.register('baz', baz, proxytype=GeneratorProxy)
 
# register get_operator_module(); make public functions accessible via proxy
MyManager.register('operator', get_operator_module)
 
##
 
def test():
    manager = MyManager()
    manager.start()
 
    print '-' * 20
 
    f1 = manager.Foo1()
    f1.f()
    f1.g()
    assert not hasattr(f1, '_h')
    assert sorted(f1._exposed_) == sorted(['f', 'g'])
 
    print '-' * 20
 
    f2 = manager.Foo2()
    f2.g()
    f2._h()
    assert not hasattr(f2, 'f')
    assert sorted(f2._exposed_) == sorted(['g', '_h'])
 
    print '-' * 20
 
    it = manager.baz()
    for i in it:
        print '<%d>' % i,
    print
 
    print '-' * 20
 
    op = manager.operator()
    print 'op.add(23, 45) =', op.add(23, 45)
    print 'op.pow(2, 94) =', op.pow(2, 94)
    print 'op.getslice(range(10), 2, 6) =', op.getslice(range(10), 2, 6)
    print 'op.repeat(range(5), 3) =', op.repeat(range(5), 3)
    print 'op._exposed_ =', op._exposed_
 
##
 
if __name__ == '__main__':
    freeze_support()
    test()
Using Pool:
 
#
# A test of `multiprocessing.Pool` class
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
 
import multiprocessing
import time
import random
import sys
 
#
# Functions used by test code
#
 
def calculate(func, args):
    result = func(*args)
    return '%s says that %s%s = %s' % (
        multiprocessing.current_process().name,
        func.__name__, args, result
        )
 
def calculatestar(args):
    return calculate(*args)
 
def mul(a, b):
    time.sleep(0.5*random.random())
    return a * b
 
def plus(a, b):
    time.sleep(0.5*random.random())
    return a + b
 
def f(x):
    return 1.0 / (x-5.0)
 
def pow3(x):
    return x**3
 
def noop(x):
    pass
 
#
# Test code
#
 
def test():
    print 'cpu_count() = %d\n' % multiprocessing.cpu_count()
 
    #
    # Create pool
    #
 
    PROCESSES = 4
    print 'Creating pool with %d processes\n' % PROCESSES
    pool = multiprocessing.Pool(PROCESSES)
    print 'pool = %s' % pool
    print
 
    #
    # Tests
    #
 
    TASKS = [(mul, (i, 7)) for i in range(10)] + \
            [(plus, (i, 8)) for i in range(10)]
 
    results = [pool.apply_async(calculate, t) for t in TASKS]
    imap_it = pool.imap(calculatestar, TASKS)
    imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)
 
    print 'Ordered results using pool.apply_async():'
    for r in results:
        print '\t', r.get()
    print
 
    print 'Ordered results using pool.imap():'
    for x in imap_it:
        print '\t', x
    print
 
    print 'Unordered results using pool.imap_unordered():'
    for x in imap_unordered_it:
        print '\t', x
    print
 
    print 'Ordered results using pool.map() --- will block till complete:'
    for x in pool.map(calculatestar, TASKS):
        print '\t', x
    print
 
    #
    # Simple benchmarks
    #
 
    N = 100000
    print 'def pow3(x): return x**3'
 
    t = time.time()
    A = map(pow3, xrange(N))
    print '\tmap(pow3, xrange(%d)):\n\t\t%s seconds' % \
          (N, time.time() - t)
 
    t = time.time()
    B = pool.map(pow3, xrange(N))
    print '\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds' % \
          (N, time.time() - t)
 
    t = time.time()
    C = list(pool.imap(pow3, xrange(N), chunksize=N//8))
    print '\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s' \
          ' seconds' % (N, N//8, time.time() - t)
 
    assert A == B == C, (len(A), len(B), len(C))
    print
 
    L = [None] * 1000000
    print 'def noop(x): pass'
    print 'L = [None] * 1000000'
 
    t = time.time()
    A = map(noop, L)
    print '\tmap(noop, L):\n\t\t%s seconds' % \
          (time.time() - t)
 
    t = time.time()
    B = pool.map(noop, L)
    print '\tpool.map(noop, L):\n\t\t%s seconds' % \
          (time.time() - t)
 
    t = time.time()
    C = list(pool.imap(noop, L, chunksize=len(L)//8))
    print '\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds' % \
          (len(L)//8, time.time() - t)
 
    assert A == B == C, (len(A), len(B), len(C))
    print
 
    del A, B, C, L
 
    #
    # Test error handling
    #
 
    print 'Testing error handling:'
 
    try:
        print pool.apply(f, (5,))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from pool.apply()'
    else:
        raise AssertionError('expected ZeroDivisionError')
 
    try:
        print pool.map(f, range(10))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from pool.map()'
    else:
        raise AssertionError('expected ZeroDivisionError')
 
    try:
        print list(pool.imap(f, range(10)))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from list(pool.imap())'
    else:
        raise AssertionError('expected ZeroDivisionError')
 
    it = pool.imap(f, range(10))
    for i in range(10):
        try:
            x = it.next()
        except ZeroDivisionError:
            if i == 5:
                pass
        except StopIteration:
            break
        else:
            if i == 5:
                raise AssertionError('expected ZeroDivisionError')
 
    assert i == 9
    print '\tGot ZeroDivisionError as expected from IMapIterator.next()'
    print
 
    #
    # Testing timeouts
    #
 
    print 'Testing ApplyResult.get() with timeout:',
    res = pool.apply_async(calculate, TASKS[0])
    while 1:
        sys.stdout.flush()
        try:
            sys.stdout.write('\n\t%s' % res.get(0.02))
            break
        except multiprocessing.TimeoutError:
            sys.stdout.write('.')
    print
    print
 
    print 'Testing IMapIterator.next() with timeout:',
    it = pool.imap(calculatestar, TASKS)
    while 1:
        sys.stdout.flush()
        try:
            sys.stdout.write('\n\t%s' % it.next(0.02))
        except StopIteration:
            break
        except multiprocessing.TimeoutError:
            sys.stdout.write('.')
    print
    print
 
    #
    # Testing callback
    #
 
    print 'Testing callback:'
 
    A = []
    B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
 
    r = pool.apply_async(mul, (7, 8), callback=A.append)
    r.wait()
 
    r = pool.map_async(pow3, range(10), callback=A.extend)
    r.wait()
 
    if A == B:
        print '\tcallbacks succeeded\n'
    else:
        print '\t*** callbacks failed\n\t\t%s != %s\n' % (A, B)
 
    #
    # Check there are no outstanding tasks
    #
 
    assert not pool._cache, 'cache = %r' % pool._cache
 
    #
    # Check close() methods
    #
 
    print 'Testing close():'
 
    for worker in pool._pool:
        assert worker.is_alive()
 
    result = pool.apply_async(time.sleep, [0.5])
    pool.close()
    pool.join()
 
    assert result.get() is None
 
    for worker in pool._pool:
        assert not worker.is_alive()
 
    print '\tclose() succeeded\n'
 
    #
    # Check terminate() method
    #
 
    print 'Testing terminate():'
 
    pool = multiprocessing.Pool(2)
    DELTA = 0.1
    ignore = pool.apply(pow3, [2])
    results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
    pool.terminate()
    pool.join()
 
    for worker in pool._pool:
        assert not worker.is_alive()
 
    print '\tterminate() succeeded\n'
 
    #
    # Check garbage collection
    #
 
    print 'Testing garbage collection:'
 
    pool = multiprocessing.Pool(2)
    DELTA = 0.1
    processes = pool._pool
    ignore = pool.apply(pow3, [2])
    results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
 
    results = pool = None
 
    time.sleep(DELTA * 2)
 
    for worker in processes:
        assert not worker.is_alive()
 
    print '\tgarbage collection succeeded\n'
 
 
if __name__ == '__main__':
    multiprocessing.freeze_support()
 
    assert len(sys.argv) in (1, 2)
 
    if len(sys.argv) == 1 or sys.argv[1] == 'processes':
        print ' Using processes '.center(79, '-')
    elif sys.argv[1] == 'threads':
        print ' Using threads '.center(79, '-')
        import multiprocessing.dummy as multiprocessing
    else:
        print 'Usage:\n\t%s [processes | threads]' % sys.argv[0]
        raise SystemExit(2)
 
    test()
Synchronization types like locks, conditions and queues:
 
#
# A test file for the `multiprocessing` package
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
 
import time, sys, random
from Queue import Empty
 
import multiprocessing               # may get overwritten
 
 
#### TEST_VALUE
 
def value_func(running, mutex):
    random.seed()
    time.sleep(random.random()*4)
 
    mutex.acquire()
    print '\n\t\t\t' + str(multiprocessing.current_process()) + ' has finished'
    running.value -= 1
    mutex.release()
 
def test_value():
    TASKS = 10
    running = multiprocessing.Value('i', TASKS)
    mutex = multiprocessing.Lock()
 
    for i in range(TASKS):
        p = multiprocessing.Process(target=value_func, args=(running, mutex))
        p.start()
 
    while running.value > 0:
        time.sleep(0.08)
        mutex.acquire()
        print running.value,
        sys.stdout.flush()
        mutex.release()
 
    print
    print 'No more running processes'
 
 
#### TEST_QUEUE
 
def queue_func(queue):
    for i in range(30):
        time.sleep(0.5 * random.random())
        queue.put(i*i)
    queue.put('STOP')
 
def test_queue():
    q = multiprocessing.Queue()
 
    p = multiprocessing.Process(target=queue_func, args=(q,))
    p.start()
 
    o = None
    while o != 'STOP':
        try:
            o = q.get(timeout=0.3)
            print o,
            sys.stdout.flush()
        except Empty:
            print 'TIMEOUT'
 
    print
 
 
#### TEST_CONDITION
 
def condition_func(cond):
    cond.acquire()
    print '\t' + str(cond)
    time.sleep(2)
    print '\tchild is notifying'
    print '\t' + str(cond)
    cond.notify()
    cond.release()
 
def test_condition():
    cond = multiprocessing.Condition()
 
    p = multiprocessing.Process(target=condition_func, args=(cond,))
    print cond
 
    cond.acquire()
    print cond
    cond.acquire()
    print cond
 
    p.start()
 
    print 'main is waiting'
    cond.wait()
    print 'main has woken up'
 
    print cond
    cond.release()
    print cond
    cond.release()
 
    p.join()
    print cond
 
 
#### TEST_SEMAPHORE
 
def semaphore_func(sema, mutex, running):
    sema.acquire()
 
    mutex.acquire()
    running.value += 1
    print running.value, 'tasks are running'
    mutex.release()
 
    random.seed()
    time.sleep(random.random()*2)
 
    mutex.acquire()
    running.value -= 1
    print '%s has finished' % multiprocessing.current_process()
    mutex.release()
 
    sema.release()
 
def test_semaphore():
    sema = multiprocessing.Semaphore(3)
    mutex = multiprocessing.RLock()
    running = multiprocessing.Value('i', 0)
 
    processes = [
        multiprocessing.Process(target=semaphore_func,
                                args=(sema, mutex, running))
        for i in range(10)
        ]
 
    for p in processes:
        p.start()
 
    for p in processes:
        p.join()
 
 
#### TEST_JOIN_TIMEOUT
 
def join_timeout_func():
    print '\tchild sleeping'
    time.sleep(5.5)
    print '\n\tchild terminating'
 
def test_join_timeout():
    p = multiprocessing.Process(target=join_timeout_func)
    p.start()
 
    print 'waiting for process to finish'
 
    while 1:
        p.join(timeout=1)
        if not p.is_alive():
            break
        print '.',
        sys.stdout.flush()
 
 
#### TEST_EVENT
 
def event_func(event):
    print '\t%r is waiting' % multiprocessing.current_process()
    event.wait()
    print '\t%r has woken up' % multiprocessing.current_process()
 
def test_event():
    event = multiprocessing.Event()
 
    processes = [multiprocessing.Process(target=event_func, args=(event,))
                 for i in range(5)]
 
    for p in processes:
        p.start()
 
    print 'main is sleeping'
    time.sleep(2)
 
    print 'main is setting event'
    event.set()
 
    for p in processes:
        p.join()
 
 
#### TEST_SHAREDVALUES
 
def sharedvalues_func(values, arrays, shared_values, shared_arrays):
    for i in range(len(values)):
        v = values[i][1]
        sv = shared_values[i].value
        assert v == sv
 
    for i in range(len(values)):
        a = arrays[i][1]
        sa = list(shared_arrays[i][:])
        assert a == sa
 
    print 'Tests passed'
 
def test_sharedvalues():
    values = [
        ('i', 10),
        ('h', -2),
        ('d', 1.25)
        ]
    arrays = [
        ('i', range(100)),
        ('d', [0.25 * i for i in range(100)]),
        ('H', range(1000))
        ]
 
    shared_values = [multiprocessing.Value(id, v) for id, v in values]
    shared_arrays = [multiprocessing.Array(id, a) for id, a in arrays]
 
    p = multiprocessing.Process(
        target=sharedvalues_func,
        args=(values, arrays, shared_values, shared_arrays)
        )
    p.start()
    p.join()
 
    assert p.exitcode == 0
 
 
####
 
def test(namespace=multiprocessing):
    global multiprocessing
 
    multiprocessing = namespace
 
    for func in [ test_value, test_queue, test_condition,
                  test_semaphore, test_join_timeout, test_event,
                  test_sharedvalues ]:
 
        print '\n\t######## %s\n' % func.__name__
        func()
 
    ignore = multiprocessing.active_children()      # cleanup any old processes
    if hasattr(multiprocessing, '_debug_info'):
        info = multiprocessing._debug_info()
        if info:
            print info
            raise ValueError('there should be no positive refcounts left')
 
 
if __name__ == '__main__':
    multiprocessing.freeze_support()
 
    assert len(sys.argv) in (1, 2)
 
    if len(sys.argv) == 1 or sys.argv[1] == 'processes':
        print ' Using processes '.center(79, '-')
        namespace = multiprocessing
    elif sys.argv[1] == 'manager':
        print ' Using processes and a manager '.center(79, '-')
        namespace = multiprocessing.Manager()
        namespace.Process = multiprocessing.Process
        namespace.current_process = multiprocessing.current_process
        namespace.active_children = multiprocessing.active_children
    elif sys.argv[1] == 'threads':
        print ' Using threads '.center(79, '-')
        import multiprocessing.dummy as namespace
    else:
        print 'Usage:\n\t%s [processes | manager | threads]' % sys.argv[0]
        raise SystemExit(2)
 
    test(namespace)
An example showing how to use queues to feed tasks to a collection of worker processes and collect the results:
 
#
# Simple example which uses a pool of workers to carry out some tasks.
#
# Notice that the results will probably not come out of the output
# queue in the same in the same order as the corresponding tasks were
# put on the input queue.  If it is important to get the results back
# in the original order then consider using `Pool.map()` or
# `Pool.imap()` (which will save on the amount of code needed anyway).
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
 
import time
import random
 
from multiprocessing import Process, Queue, current_process, freeze_support
 
#
# Function run by worker processes
#
 
def worker(input, output):
    for func, args in iter(input.get, 'STOP'):
        result = calculate(func, args)
        output.put(result)
 
#
# Function used to calculate result
#
 
def calculate(func, args):
    result = func(*args)
    return '%s says that %s%s = %s' % \
        (current_process().name, func.__name__, args, result)
 
#
# Functions referenced by tasks
#
 
def mul(a, b):
    time.sleep(0.5*random.random())
    return a * b
 
def plus(a, b):
    time.sleep(0.5*random.random())
    return a + b
 
#
#
#
 
def test():
    NUMBER_OF_PROCESSES = 4
    TASKS1 = [(mul, (i, 7)) for i in range(20)]
    TASKS2 = [(plus, (i, 8)) for i in range(10)]
 
    # Create queues
    task_queue = Queue()
    done_queue = Queue()
 
    # Submit tasks
    for task in TASKS1:
        task_queue.put(task)
 
    # Start worker processes
    for i in range(NUMBER_OF_PROCESSES):
        Process(target=worker, args=(task_queue, done_queue)).start()
 
    # Get and print results
    print 'Unordered results:'
    for i in range(len(TASKS1)):
        print '\t', done_queue.get()
 
    # Add more tasks using `put()`
    for task in TASKS2:
        task_queue.put(task)
 
    # Get and print some more results
    for i in range(len(TASKS2)):
        print '\t', done_queue.get()
 
    # Tell child processes to stop
    for i in range(NUMBER_OF_PROCESSES):
        task_queue.put('STOP')
 
 
if __name__ == '__main__':
    freeze_support()
    test()
An example of how a pool of worker processes can each run a SimpleHTTPServer.HttpServer instance while sharing a single listening socket.
 
#
# Example where a pool of http servers share a single listening socket
#
# On Windows this module depends on the ability to pickle a socket
# object so that the worker processes can inherit a copy of the server
# object.  (We import `multiprocessing.reduction` to enable this pickling.)
#
# Not sure if we should synchronize access to `socket.accept()` method by
# using a process-shared lock -- does not seem to be necessary.
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
 
import os
import sys
 
from multiprocessing import Process, current_process, freeze_support
from BaseHTTPServer import HTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler
 
if sys.platform == 'win32':
    import multiprocessing.reduction    # make sockets pickable/inheritable
 
 
def note(format, *args):
    sys.stderr.write('[%s]\t%s\n' % (current_process().name, format%args))
 
 
class RequestHandler(SimpleHTTPRequestHandler):
    # we override log_message() to show which process is handling the request
    def log_message(self, format, *args):
        note(format, *args)
 
def serve_forever(server):
    note('starting server')
    try:
        server.serve_forever()
    except KeyboardInterrupt:
        pass
 
 
def runpool(address, number_of_processes):
    # create a single server object -- children will each inherit a copy
    server = HTTPServer(address, RequestHandler)
 
    # create child processes to act as workers
    for i in range(number_of_processes-1):
        Process(target=serve_forever, args=(server,)).start()
 
    # main process also acts as a worker
    serve_forever(server)
 
 
def test():
    DIR = os.path.join(os.path.dirname(__file__), '..')
    ADDRESS = ('localhost', 8000)
    NUMBER_OF_PROCESSES = 4
 
    print 'Serving at http://%s:%d using %d worker processes' % \
          (ADDRESS[0], ADDRESS[1], NUMBER_OF_PROCESSES)
    print 'To exit press Ctrl-' + ['C', 'Break'][sys.platform=='win32']
 
    os.chdir(DIR)
    runpool(ADDRESS, NUMBER_OF_PROCESSES)
 
 
if __name__ == '__main__':
    freeze_support()
    test()
Some simple benchmarks comparing multiprocessing with threading:
 
#
# Simple benchmarks for the multiprocessing package
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
 
import time, sys, multiprocessing, threading, Queue, gc
 
if sys.platform == 'win32':
    _timer = time.clock
else:
    _timer = time.time
 
delta = 1
 
 
#### TEST_QUEUESPEED
 
def queuespeed_func(q, c, iterations):
    a = '0' * 256
    c.acquire()
    c.notify()
    c.release()
 
    for i in xrange(iterations):
        q.put(a)
 
    q.put('STOP')
 
def test_queuespeed(Process, q, c):
    elapsed = 0
    iterations = 1
 
    while elapsed < delta:
        iterations *= 2
 
        p = Process(target=queuespeed_func, args=(q, c, iterations))
        c.acquire()
        p.start()
        c.wait()
        c.release()
 
        result = None
        t = _timer()
 
        while result != 'STOP':
            result = q.get()
 
        elapsed = _timer() - t
 
        p.join()
 
    print iterations, 'objects passed through the queue in', elapsed, 'seconds'
    print 'average number/sec:', iterations/elapsed
 
 
#### TEST_PIPESPEED
 
def pipe_func(c, cond, iterations):
    a = '0' * 256
    cond.acquire()
    cond.notify()
    cond.release()
 
    for i in xrange(iterations):
        c.send(a)
 
    c.send('STOP')
 
def test_pipespeed():
    c, d = multiprocessing.Pipe()
    cond = multiprocessing.Condition()
    elapsed = 0
    iterations = 1
 
    while elapsed < delta:
        iterations *= 2
 
        p = multiprocessing.Process(target=pipe_func,
                                    args=(d, cond, iterations))
        cond.acquire()
        p.start()
        cond.wait()
        cond.release()
 
        result = None
        t = _timer()
 
        while result != 'STOP':
            result = c.recv()
 
        elapsed = _timer() - t
        p.join()
 
    print iterations, 'objects passed through connection in',elapsed,'seconds'
    print 'average number/sec:', iterations/elapsed
 
 
#### TEST_SEQSPEED
 
def test_seqspeed(seq):
    elapsed = 0
    iterations = 1
 
    while elapsed < delta:
        iterations *= 2
 
        t = _timer()
 
        for i in xrange(iterations):
            a = seq[5]
 
        elapsed = _timer()-t
 
    print iterations, 'iterations in', elapsed, 'seconds'
    print 'average number/sec:', iterations/elapsed
 
 
#### TEST_LOCK
 
def test_lockspeed(l):
    elapsed = 0
    iterations = 1
 
    while elapsed < delta:
        iterations *= 2
 
        t = _timer()
 
        for i in xrange(iterations):
            l.acquire()
            l.release()
 
        elapsed = _timer()-t
 
    print iterations, 'iterations in', elapsed, 'seconds'
    print 'average number/sec:', iterations/elapsed
 
 
#### TEST_CONDITION
 
def conditionspeed_func(c, N):
    c.acquire()
    c.notify()
 
    for i in xrange(N):
        c.wait()
        c.notify()
 
    c.release()
 
def test_conditionspeed(Process, c):
    elapsed = 0
    iterations = 1
 
    while elapsed < delta:
        iterations *= 2
 
        c.acquire()
        p = Process(target=conditionspeed_func, args=(c, iterations))
        p.start()
 
        c.wait()
 
        t = _timer()
 
        for i in xrange(iterations):
            c.notify()
            c.wait()
 
        elapsed = _timer()-t
 
        c.release()
        p.join()
 
    print iterations * 2, 'waits in', elapsed, 'seconds'
    print 'average number/sec:', iterations * 2 / elapsed
 
####
 
def test():
    manager = multiprocessing.Manager()
 
    gc.disable()
 
    print '\n\t######## testing Queue.Queue\n'
    test_queuespeed(threading.Thread, Queue.Queue(),
                    threading.Condition())
    print '\n\t######## testing multiprocessing.Queue\n'
    test_queuespeed(multiprocessing.Process, multiprocessing.Queue(),
                    multiprocessing.Condition())
    print '\n\t######## testing Queue managed by server process\n'
    test_queuespeed(multiprocessing.Process, manager.Queue(),
                    manager.Condition())
    print '\n\t######## testing multiprocessing.Pipe\n'
    test_pipespeed()
 
    print
 
    print '\n\t######## testing list\n'
    test_seqspeed(range(10))
    print '\n\t######## testing list managed by server process\n'
    test_seqspeed(manager.list(range(10)))
    print '\n\t######## testing Array("i", ..., lock=False)\n'
    test_seqspeed(multiprocessing.Array('i', range(10), lock=False))
    print '\n\t######## testing Array("i", ..., lock=True)\n'
    test_seqspeed(multiprocessing.Array('i', range(10), lock=True))
 
    print
 
    print '\n\t######## testing threading.Lock\n'
    test_lockspeed(threading.Lock())
    print '\n\t######## testing threading.RLock\n'
    test_lockspeed(threading.RLock())
    print '\n\t######## testing multiprocessing.Lock\n'
    test_lockspeed(multiprocessing.Lock())
    print '\n\t######## testing multiprocessing.RLock\n'
    test_lockspeed(multiprocessing.RLock())
    print '\n\t######## testing lock managed by server process\n'
    test_lockspeed(manager.Lock())
    print '\n\t######## testing rlock managed by server process\n'
    test_lockspeed(manager.RLock())
 
    print
 
    print '\n\t######## testing threading.Condition\n'
    test_conditionspeed(threading.Thread, threading.Condition())
    print '\n\t######## testing multiprocessing.Condition\n'
    test_conditionspeed(multiprocessing.Process, multiprocessing.Condition())
    print '\n\t######## testing condition managed by a server process\n'
    test_conditionspeed(multiprocessing.Process, manager.Condition())
 
    gc.enable()
 
if __name__ == '__main__':
    multiprocessing.freeze_support()
    test()

  

posted @ 2016-06-05 16:18  十年闷油瓶  阅读(413)  评论(0)    收藏  举报
点击右上角即可分享
微信分享提示