JDK8 从永久代到元空间

https://blog.csdn.net/qq_16681169/article/details/70471010

一.永久带到元空间的变迁
其实,移除永久代的工作从JDK1.7就开始了。JDK1.7中,存储在永久代的部分数据就已经转移到了Java Heap或者是 Native Heap。但永久代仍存在于JDK1.7中,并没完全移除,譬如符号引用(Symbols)转移到了native heap;字面量(interned strings)转移到了java heap;类的静态变量(class statics)转移到了java heap。我们可以通过一段程序来比较 JDK 1.6 与 JDK 1.7及 JDK 1.8 的区别,以字符串常量为例:

package com.paddx.test.memory;

import java.util.ArrayList;
import java.util.List;

public class StringOomMock {
static String base = "string";
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
for (int i=0;i< Integer.MAX_VALUE;i++){
String str = base + base;
base = str;
list.add(str.intern());
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
这段程序以2的指数级不断的生成新的字符串,这样可以比较快速的消耗内存。我们通过 JDK 1.6、JDK 1.7 和 JDK 1.8 分别运行:
JDK 1.6 的运行结果:

JDK 1.7的运行结果:

JDK 1.8的运行结果:


从上述结果可以看出,JDK 1.6下,会出现“PermGen Space”的内存溢出,而在 JDK 1.7和 JDK 1.8 中,会出现堆内存溢出,并且 JDK 1.8中 PermSize 和 MaxPermGen 已经无效。因此,可以大致验证 JDK 1.7 和 1.8 将字符串常量由永久代转移到堆中,并且 JDK 1.8 中已经不存在永久代的结论。

二.为什么移除持久代
它的大小是在启动时固定好的——很难验证并进行调优。-XX:MaxPermSize
HotSpot的内部类型也是Java对象:它可能会在Full GC中被移动,非强类型,难以跟踪调试,需要存储元数据的元数据信息。
简化垃圾回收:对每一个回收集使用专门的元数据迭代器。
可以在GC不进行暂停的情况下并发地释放类数据。
使得原来受限于持久代的一些改进未来有可能实现
三.什么是元空间
1.概括
元空间的本质和永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制,但可以通过以下参数来指定元空间的大小:
  -XX:MetaspaceSize,初始空间大小,达到该值就会触发垃圾收集进行类型卸载,同时GC会对该值进行调整:如果释放了大量的空间,就适当降低该值;如果释放了很少的空间,那么在不超过MaxMetaspaceSize时,适当提高该值。
  -XX:MaxMetaspaceSize,最大空间,默认是没有限制的。
  除了上面两个指定大小的选项以外,还有两个与 GC 相关的属性:
  -XX:MinMetaspaceFreeRatio,在GC之后,最小的Metaspace剩余空间容量的百分比,减少为分配空间所导致的垃圾收集
  -XX:MaxMetaspaceFreeRatio,在GC之后,最大的Metaspace剩余空间容量的百分比,减少为释放空间所导致的垃圾收集
现在我们在 JDK 8下重新运行一下代码段 4,不过这次不再指定 PermSize 和 MaxPermSize。而是指定 MetaSpaceSize 和 MaxMetaSpaceSize的大小。输出结果如下:

从输出结果,我们可以看出,这次不再出现永久代溢出,而是出现了元空间的溢出。

2.元空间的特性
充分利用了Java语言规范中的好处:类及相关的元数据的生命周期与类加载器的一致
每个加载器有专门的存储空间
只进行线性分配
不会单独回收某个类
省掉了GC扫描及压缩的时间
元空间里的对象的位置是固定的
如果GC发现某个类加载器不再存活了,会把相关的空间整个回收掉
元空间的内存分配模型
绝大多数的类元数据的空间都从本地内存中分配
用来描述类元数据的类也被删除了
分元数据分配了多个虚拟内存空间
给每个类加载器分配一个内存块的列表。块的大小取决于类加载器的类型; sun/反射/代理对应的类加载器的块会小一些
归还内存块,释放内存块列表
一旦元空间的数据被清空了,虚拟内存的空间会被回收掉
减少碎片的策略
我们来看下JVM是如何给元数据分配虚拟内存的空间的

你可以看到虚拟内存空间是如何分配的(vs1,vs2,vs3) ,以及类加载器的内存块是如何分配的。CL是Class Loader的缩写。
3.元空间内存管理
元空间的内存管理由元空间虚拟机来完成。先前,对于类的元数据我们需要不同的垃圾回收器进行处理,现在只需要执行元空间虚拟机的C++代码即可完成。在元空间中,类和其元数据的生命周期和其对应的类加载器是相同的。话句话说,只要类加载器存活,其加载的类的元数据也是存活的,因而不会被回收掉。
准确的来说,每一个类加载器的存储区域都称作一个元空间,所有的元空间合在一起就是我们一直说的元空间。当一个类加载器被垃圾回收器标记为不再存活,其对应的元空间会被回收。在元空间的回收过程中没有重定位和压缩等操作。但是元空间内的元数据会进行扫描来确定Java引用。
元空间虚拟机负责元空间的分配,其采用的形式为组块分配。组块的大小因类加载器的类型而异。在元空间虚拟机中存在一个全局的空闲组块列表。当一个类加载器需要组块时,它就会从这个全局的组块列表中获取并维持一个自己的组块列表。当一个类加载器不再存活,那么其持有的组块将会被释放,并返回给全局组块列表。类加载器持有的组块又会被分成多个块,每一个块存储一个单元的元信息。组块中的块是线性分配(指针碰撞分配形式)。组块分配自内存映射区域。这些全局的虚拟内存映射区域以链表形式连接,一旦某个虚拟内存映射区域清空,这部分内存就会返回给操作系统。

上图展示的是虚拟内存映射区域如何进行元组块的分配。类加载器1和3表明使用了反射或者为匿名类加载器,他们使用了特定大小组块。 而类加载器2和4根据其内部条目的数量使用小型或者中型的组块。

4.元空间调优与工具
正如上面提到的,元空间虚拟机控制元空间的增长。但是有些时候我们想限制其增长,比如通过显式在命令行中设置-XX:MaxMetaspaceSize。默认情况下,-XX:MaxMetaspaceSize的值没有限制,因此元空间甚至可以延伸到交换区,但是这时候当我们进行本地内存分配时将会失败。
对于一个64位的服务器端JVM来说,其默认的–XX:MetaspaceSize值为21MB。这就是初始的高水位线。一旦触及到这个水位线,Full GC将会被触发并卸载没有用的类(即这些类对应的类加载器不再存活),然后这个高水位线将会重置。新的高水位线的值取决于GC后释放了多少元空间。如果释放的空间少,这个高水位线则上升。如果释放空间过多,则高水位线下降。如果初始化的高水位线设置过低, 上述高水位线调整情况会发生很多次。通过垃圾回收器的日志我们可以观察到Full GC多次调用。为了避免频繁的GC,建议将–XX:MetaspaceSize设置为一个相对较高的值。
经过多次GC之后,元空间虚拟机自动调节高水位线,以此来推迟下一次垃圾回收到来。有这样两个选项 XX:MinMetaspaceFreeRatio和XX:MaxMetaspaceFreeRatio,他们类似于GC的FreeRatio选项,用来设置元空间空闲比例的最大值和最小值。我们可以通过命令行对这两个选项设置对应的值。

5.元空间的问题
前面已经提到,元空间虚拟机采用了组块分配的形式,同时区块的大小由类加载器类型决定。类信息并不是固定大小,因此有可能分配的空闲区块和类需要的区块大小不同,这种情况下可能导致碎片存在。元空间虚拟机目前并不支持压缩操作,所以碎片化是目前最大的问题。
————————————————
版权声明:本文为CSDN博主「zxcodestudy」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_16681169/article/details/70471010

posted @ 2020-07-15 21:50  newlangwen  阅读(169)  评论(0编辑  收藏  举报