74. Search a 2D Matrix && 240. Search a 2D Matrix II
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3, return true.
Hide Similar Problems
public class Solution { public boolean searchMatrix(int[][] matrix, int target) { int row_num = matrix.length; int col_num = matrix[0].length; //Treat it as a one-dimension array. int begin = 0, end = row_num * col_num - 1; while(begin <= end){ int mid = (begin + end) / 2; int mid_value = matrix[mid/col_num][mid%col_num]; if( mid_value == target){ return true; }else if(mid_value < target){ begin = mid+1;//Otherwise infinite loop. }else{ end = mid-1; } } return false; } }
240. Search a 2D Matrix II
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5, return true.
Given target = 20, return false.
O(M+N) solution:
public class Solution { public boolean searchMatrix(int[][] matrix, int target) { if(matrix == null || matrix.length < 1 || matrix[0].length <1) { return false; } int col = matrix[0].length-1; int row = 0; while(col >= 0 && row <= matrix.length-1) { if(target == matrix[row][col]) { return true; } else if(target < matrix[row][col]) { col--; } else if(target > matrix[row][col]) { row++; } } return false; } }
2D Binary Search. Divide and Conquer (log4/3(M*N)).
public class Solution { public boolean searchMatrix(int[][] matrix, int target) { return searchMatrix(matrix, target, 0, matrix.length-1, 0, matrix[0].length-1); } //[rFrom, rTo], [cFrom, cTo] private boolean searchMatrix(int[][] matrix, int target, int rFrom, int rTo, int cFrom, int cTo) { if(rFrom > rTo || cFrom > cTo) return false; if(rFrom == rTo && cFrom == cTo) { if(matrix[rFrom][cFrom] == target) return true; return false; } int rMid = (rFrom+rTo)/2; int cMid = (cFrom+cTo)/2; if(matrix[rMid][cMid] == target) return true; if(matrix[rMid][cMid] < target) return searchMatrix(matrix, target, rFrom, rTo, cMid+1, cTo) || // right side region searchMatrix(matrix, target, rMid+1, rTo, cFrom, cMid); //lower left region return searchMatrix(matrix, target, rFrom, rMid-1, cFrom, cTo) || //up side region searchMatrix(matrix, target, rMid, rTo, cFrom, cMid-1); //lower left region } }
M*log2(N): Do the 1D binary search for each row.

浙公网安备 33010602011771号