FOJ Problem 1753
解法:筛素数。
但是不知道为什么用unsigned long long一直wa,而unsigned __int64可以ac。怨念啊= =
先筛选出100000以内的所有素数,约10000个。对所有的ni,mi,分别求出ni,ni-mi,mi的阶乘含有的每个素因子的个数。然后就简单了吧。还有一个剪枝的地方,见注释。
提交了10几遍- -
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <string.h>
#include <queue>
#include <string>
#include <algorithm>
using namespace std;
const int N = 100005;
const int M = 10000;
const int INF = 1<<29;
bool is[N]; int prm[M];
int getprm(int n){
int i, j, k = 0;
int s, e = (int)(sqrt(0.0 + n) + 1);
memset(is, 1, sizeof(is));
prm[k++] = 2; is[0] = is[1] = 0;
for (i = 4; i < n; i += 2) is[i] = 0;
for (i = 3; i < e; i += 2) if (is[i]) {
prm[k++] = i;
for (s = i * 2, j = i * i; j < n; j += s) is[j] = 0;
// 因为j是奇数,所以+奇数i后是偶数,不必处理!
}
for ( ; i < n; i += 2) if (is[i]) prm[k++] = i;
return k; // 返回素数的个数
}
int t, mi[155], ni[155], k;
int getx(int n,int x)//非递归写法
{
int ret = 0;
while (n){
ret += n/x;
n /= x;
}
return ret;
}
int a, b[10000];
unsigned __int64 solve(){
for (int i = 0; i <= k; i++)
b[i] = INF;
for (int i = 0; i < t; i++){
for (int j = 0; j < k; j++){
//不加这个会超时- -
if (!b[j])continue;
a=getx(ni[i],prm[j])-getx(ni[i]-mi[i],prm[j])-getx(mi[i],prm[j]);
b[j]=min(b[j],a);
}
}
unsigned __int64 sum = 1;
for (int j = 0; j < k; j++)
if (b[j])
for (int l=0; l<b[j]; l++)
sum *= (unsigned __int64)prm[j];
return sum;
}
int main(){
k = getprm(N - 3);
while (scanf("%d", &t) != EOF){
for (int i = 0; i < t; i++)
scanf("%d%d", &ni[i], &mi[i]);
printf("%I64u\n", solve());
}
return 0;
}
浙公网安备 33010602011771号