Loading

摘要: 是否存在这样的函数 \(f\),使得 \(f(x)\) 在 \([a,b]\) 可导 \(f'(x)\) 在 \((a,b)\) 中存在间断点 考虑 \(f(x)=\begin{cases}0 & \quad (x=0)\\ x^2 \sin \frac{1}{x} & \quad (x \ne 0 阅读全文
posted @ 2021-10-18 13:23 nekko 阅读(84) 评论(0) 推荐(0)
摘要: 利用零点存在定理证明: 设 \(f \in C(-\infty,+\infty)\) 且 \(f(f(x))=x\),证明:\(\exists \zeta \in (-\infty,+\infty),s.t.f(\zeta)=\zeta\) 设 \(f(x)\) 是以 \(2\pi\) 为周期的连续 阅读全文
posted @ 2021-10-18 12:16 nekko 阅读(170) 评论(0) 推荐(0)
摘要: 试举出定义在 \((-\infty, +\infty)\) 上的函数 \(f(x)\),要求:\(f(x)\) 仅在 \(0,1,2\) 三点处连续,其余点都是 \(f(x)\) 的第一类间断点 实际上这种函数是不存在的,若 \(f(x)\) 在 \(x_0\) 处左右极限都存在,则在 \(x_0\ 阅读全文
posted @ 2021-10-18 11:48 nekko 阅读(63) 评论(0) 推荐(0)