高考数学?杂题
1
证明:
\[\ln(1+\frac{1}{9})<0.1e^{0.1}<\frac{1}{9}
\]
一方面:
\[\begin{aligned}
&e^{0.1}<\frac{10}{9} \\
&1<\ln (\frac{10}{9})^{10} \\
&e<(1+\frac{1}{9})^{10} \text{ 显然Q.E.D.} \\
&(1+\frac{1}{n})^n<e<(1+\frac{1}{n})^{n+1}
\end{aligned}
\]
另一方面:
\[\begin{aligned}
&e>(1+\frac{1}{9})^9 \\
&0.1e^{0.1}>0.1(e^{0.9\ln(1+1/9)})>0.1(1+0.9\ln(1+1/9))=0.1+0.09\ln(1+1/9) \\
&10>\ln(1+1/9) \Rightarrow 0.1+0.09\ln(1+1/9)>\ln(1+1/9) \\
&0.1e^{0.1}>\ln(1+1/9) \text{ 显然Q.E.D.}
\end{aligned}
\]
2
求 \(a\) 的范围,满足 \(e^x+ax \ge 1-\ln(x+1) \quad (x>0)\)
\[\begin{aligned}
&h(x)=e^x+ax+\ln(x+1)-1,h'(x)=e^x+a+\frac{1}{x+1} \\
&\forall x>0,\exists \zeta \in (0,x),s.t.h(x)=h(0)+h'(0)\zeta=h'(0)\zeta \\
&h(x) \ge 0(x>0) \Rightarrow h'(0) \ge 0 \Rightarrow a \ge -2 \\
&a \ge -2:h(x)\ge e^x-2x+\ln(x+1)-1 \ge \frac{x^2}{2}-x+\ln(x+1)=g(x) \\
&g'(x)=x-1+\frac{1}{x+1}=\frac{x^2}{x+1}>0 \Rightarrow g(x) \ge g(0)=0 \\
&\Rightarrow h(x) \ge 0 \Rightarrow a \in [-2,+\infty)
\end{aligned}
\]

浙公网安备 33010602011771号