圆锥曲线 随缘一题(1)
设抛物线 \(\Gamma:y^2=2px(p>0)\),直线 \(l:x=my+p\) 经过 \(T(p,0)\) 并且与 \(\Gamma\) 交于两点 \(A(x_1,y_1),B(x_2,y_2)\)
求证:\(\frac{1}{|AT|^2}+\frac{1}{|BT|^2}=\frac{1}{p^2}\)
法一
\[\begin{aligned}
&\begin{cases}
y^2=2px \\
x=my+p \\
\end{cases} \Rightarrow
y^2=2pmy+2p^2 \Rightarrow
\begin{cases}
y_1+y_2=2pm \\
y_1 \cdot y_2=-2p^2
\end{cases} \\
\frac{1}{|AT|^2}+\frac{1}{|BT|^2}
=&\frac{1}{(x_1-p)^2+y_1^2}+\frac{1}{(x_2-p)^2+y_2^2}=\frac{1}{m^2+1}\left( \frac{1}{y_1^2}+\frac{1}{y_2^2} \right) \\
=&\frac{1}{m^2+1}\frac{(y_1+y_2)^2-2y_1y_2}{y_1^2y_2^2}=\frac{1}{m^2+1}\frac{4p^2m^2+4p^2}{4p^4}=\frac{1}{p^2}
\end{aligned}
\]
法二
考虑到在直角三角形中,对于直角边 \(a,b\) 和斜边上的高 \(h\) 有:\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{h^2}\)
将 \(B\) 逆时针旋转到 \(l_{\perp}\) 上得到 \(B'(x_3,y_3)\),于是有:
\[\begin{bmatrix}
x_3 \\
y_3
\end{bmatrix}=
\begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x_2-p \\
y_2
\end{bmatrix}+
\begin{bmatrix}
p \\
0
\end{bmatrix} =
\begin{bmatrix}
p-y_2 \\
x_2-p
\end{bmatrix}
\]
于是有 \(l_{AB'}:y=\frac{x_2-p-y_1}{p-y_2-x_1}(x-x_1)+y_1\),接下来只需要验证 \(\Delta ATB'\) 中有 \(h=p\) 即可
\[\begin{aligned}
h&=\frac{|(x_2-p-y_1)(p-x_1)+(p-y_2-x_1)y_1|}{\sqrt{(p-y_2-x_1)^2+(x_2-p-y_1)^2}} \\
&\xlongequal[x_2-p=my_2]{x_1-p=my_1}\frac{|(my_2-y_1)(-my_1)+(-y_2-my_1)y_1|}{\sqrt{(1+m^2)(y_1^2+y_2^2)}} \\
&=\frac{|(1+m^2)y_1y_2|}{\sqrt{(1+m^2)(4p^2(1+m^2))}}=\frac{2p^2}{2p}=p
\end{aligned}
\]


浙公网安备 33010602011771号