微积分(A)每日一题[41]
判断敛散性:\(\int_0^{+\infty} \frac{\sin^2x}{x^p}dx\)
\[\begin{aligned}
&当 p \le 0 时显然发散 \\
&\int_0^{+\infty} \frac{\sin^2x}{x^p}dx=
\int_0^{1} \frac{\sin^2x}{x^p}dx+
\int_1^{+\infty} \frac{\sin^2x}{x^p}dx \\
&\lim_{x \to 0^+}x^{p-2} \frac{\sin^2x}{x^p}=1 \Rightarrow p-2<1 \Rightarrow p<3时收敛(0<p<3) \\
&\lim_{x \to +\infty}x^{r} \frac{\sin^2x}{x^p}=l \Rightarrow p-r>0 \land r>1 \Rightarrow p>1 \\
&故 1<p<3时收敛
\end{aligned}
\]

浙公网安备 33010602011771号