微积分(A)随缘一题[23]
求:\(\lim_{x \to 0^+}\frac{x \ln \sin x-\sin x \ln x}{x^3\ln x}\)
\[\lim_{x \to 0^+}\frac{x \ln \sin x-\sin x \ln x}{x^3\ln x} \\
=\lim_{x \to 0^+}\frac{x \ln \sin x-x \ln x +x \ln x -\sin x \ln x}{x^3\ln x} \\
=\lim_{x \to 0^+} \left( \frac{\ln \frac{\sin x}{x}}{x^2\ln x}+\frac{x-\sin x}{x^3} \right) \\
=\left(\lim_{x \to 0^+} \frac{\ln (1+\frac{\sin x}{x}-1)}{x^2\ln x}\right)+\frac{1}{6} \\
=\left(\lim_{x \to 0^+} \frac{\frac{\sin x}{x}-1}{x^2\ln x}\right)+\frac{1}{6} \\
=\left(\lim_{x \to 0^+} \frac{-\frac{x^3}{6}}{x^3\ln x}\right)+\frac{1}{6}=\frac{1}{6}
\]
由拉格朗日中值定理可得:
\[\lim_{x \to 0^+}\frac{x \ln \sin x-\sin x \ln x}{x^3\ln x} \\
=\lim_{x \to 0^+} \frac{\sin x}{x^2\ln x}\left( \frac{\ln \sin x}{\sin x} -\frac{\ln x}{x} \right) \\
=\lim_{x \to 0^+,\sin x < \zeta < x} \frac{\sin x}{x^2\ln x}(\sin x-x) \frac{1-\zeta}{\zeta^2} \\
\]
又由夹逼定理可得:
\[\lim_{x \to 0^+,\sin x < \zeta < x} \frac{\sin x}{x^2\ln x}(\sin x-x) \frac{1-\ln \zeta}{\zeta^2} \\
\ge \lim_{x \to 0^+,\sin x < \zeta < x} \frac{\sin x}{x^2\ln x}(\sin x-x) \frac{1-\ln x}{x^2} \\
= \lim_{x \to 0^+} \frac{x}{x^2\ln x}\left(-\frac{x^3}{6} \right) \frac{1-\ln x}{x^2} \\
= \lim_{x \to 0^+} \frac{x}{x^2\ln x}\left(-\frac{x^3}{6} \right) \frac{1-\ln x}{x^2} \\
=\frac{1}{6}\lim_{x \to 0^+}\frac{\ln x-1}{\ln x} = \frac{1}{6}
\]
\[\lim_{x \to 0^+,\sin x < \zeta < x} \frac{\sin x}{x^2\ln x}(\sin x-x) \frac{1-\ln \zeta}{\zeta^2} \\
\le \lim_{x \to 0^+} \frac{\sin x}{x^2\ln x}(\sin x-x)\frac{1-\ln \sin x}{\sin^2x} \\
=\lim_{x\to0^+}\frac{-\frac{x^3}{6}(1-\ln\sin x)}{x^3\ln x} \\
=\frac{1}{6}\lim_{x \to 0^+} \frac{\ln \sin x-1}{\ln x}=\frac{1}{6}\lim_{x \to 0^+} \frac{\cot x}{\frac{1}{x}}=\frac{1}{6}
\]
所以:\(\lim_{x \to 0^+}\frac{x\ln \sin x-\sin x\ln x}{x^3\ln x}=\frac{1}{6}\)

浙公网安备 33010602011771号